Bioorg Med Chem Lett
May 2023
Derivatives of lactam, cyclic urea and carbamate were explored as aniline amide replacements in a series of phthalazinone-based ROCK inhibitors. Potent ROCK2 inhibitors such as 22 were identified with excellent overall kinase selectivity as well as good isoform selectivity over ROCK1.
View Article and Find Full Text PDFWhile several farnesoid X receptor (FXR) agonists under clinical investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clinical efficacy and approvability. Herein, we report the discovery and preclinical evaluation of compound (BMS-986339), a nonbile acid FXR agonist with a pharmacologically distinct profile relative to our previously reported agonist BMS-986318. Compound exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo.
View Article and Find Full Text PDFHigh-level quantum chemical computations have provided significant insight into the fundamental physical nature of non-covalent interactions. These studies have focused primarily on gas-phase computations of small van der Waals dimers; however, these interactions frequently take place in complex chemical environments, such as proteins, solutions, or solids. To better understand how the chemical environment affects non-covalent interactions, we have undertaken a quantum chemical study of π-π interactions in an aqueous solution, as exemplified by T-shaped benzene dimers surrounded by 28 or 50 explicit water molecules.
View Article and Find Full Text PDFHerein we report the discovery and preclinical biological evaluation of 6-(2-(5-cyclopropyl-3-(3,5-dichloropyridin-4-yl)isoxazol-4-yl)-7-azaspiro[3.5]non-1-en-7-yl)-4-(trifluoromethyl)quinoline-2-carboxylic acid, compound (BMS-986318), a nonbile acid farnesoid X receptor (FXR) agonist. Compound exhibits potent in vitro and in vivo activation of FXR, has a suitable ADME profile, and demonstrates efficacy in the mouse bile duct ligation model of liver cholestasis and fibrosis.
View Article and Find Full Text PDFSymmetry-adapted perturbation theory (SAPT) has become an invaluable tool for studying the fundamental nature of non-covalent interactions by directly computing the electrostatics, exchange (steric) repulsion, induction (polarization), and London dispersion contributions to the interaction energy using quantum mechanics. Further application of SAPT is primarily limited by its computational expense, where even its most affordable variant (SAPT0) scales as the fifth power of system size [O(N)] due to the dispersion terms. The algorithmic scaling of SAPT0 is reduced from O(N)→O(N) by replacing these terms with the empirical D3 dispersion correction of Grimme and co-workers, forming a method that may be termed SAPT0-D3.
View Article and Find Full Text PDFA novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC of 0.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2020
Structure-activity relationship optimization on a series of phenylpyrazole amides led to the identification of a dual ROCK1 and ROCK2 inhibitor (25) which demonstrated good potency, kinome selectivity and favorable pharmacokinetic profiles. Compound 25 was selected as a tool molecule for in vivo studies including evaluating hemodynamic effects in telemeterized mice, from which moderate decreases in blood pressure were observed.
View Article and Find Full Text PDFThe study of noncovalent interactions, notably including drug-protein binding, relies heavily on the language of localized functional group contacts: hydrogen bonding, π-π interactions, CH-π contacts, halogen bonding, etc. Applying the state-of-the-art functional group symmetry-adapted perturbation theory (F-SAPT) to an important question of chloro versus methyl aryl substitution in factor Xa inhibitor drugs, we find that a localized contact model provides an incorrect picture for the origin of the enhancement of chloro-containing ligands. Instead, the enhancement is found to originate from many intermediate-range contacts distributed throughout the binding pocket, particularly including the peptide bonds in the protein backbone.
View Article and Find Full Text PDFA novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-cis-CF to the pyrrolidine improves the human GPR40 binding K and agonist efficacy.
View Article and Find Full Text PDFProprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III-domain and engineered for high-affinity target binding.
View Article and Find Full Text PDFSeveral strategies have been employed to reduce the long in vivo half-life of our lead CB1 antagonist, triazolopyridazinone 3, to differentiate the pharmacokinetic profile versus the lead clinical compounds. An in vitro and in vivo clearance data set revealed a lack of correlation; however, when compounds with <5% free fraction were excluded, a more predictable correlation was observed. Compounds with log P between 3 and 4 were likely to have significant free fraction, so we designed compounds in this range to give more predictable clearance values.
View Article and Find Full Text PDFA series of diphenylpyridylethanamine (DPPE) derivatives was identified exhibiting potent CETP inhibition. Replacing the labile ester functionality in the initial lead 7 generated a series of amides and ureas. Further optimization of the DPPE series for potency resulted in the discovery of cyclopentylurea 15d, which demonstrated a reduction in cholesterol ester transfer activity (48% of predose level) in hCETP/apoB-100 dual transgenic mice.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2011
The design, synthesis and SAR of a novel class of valerolactam-based arylsulfonamides as potent and selective FXa inhibitors is reported. The arylsulfonamide-valerolactam scaffold was derived based on the proposed bioisosterism to the arylcyanoguanidine-caprolactam core in known FXa inhibitors. The SAR study led to compound 46 as the most potent FXa inhibitor in this series, with an IC(50) of 7 nM and EC(2×PT) of 1.
View Article and Find Full Text PDFThe cannabinoid CB(1) G protein-coupled receptor has been shown to be a regulator of food consumption and has been studied extensively as a drug target for the treatment of obesity. To advance understanding of the receptor's three-dimensional structure, we performed mutagenesis studies at human cannabinoid CB(1) receptor residues F200 and S383 and measured changes in activity and binding affinity of compounds from two recently discovered active chemotypes, arylsulfonamide agonists and tetrahydroquinoline-based inverse agonists, as well as literature compounds. Our results add support to previous findings that both agonists and inverse agonists show varied patterns of binding at the two mutated residue sites, suggesting multiple subsites for binding to the cannabinoid CB(1) receptor for both functional types of ligands.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2009
We report the design and synthesis of a novel class of N,N'-disubstituted aroylguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The structure-activity relationships (SAR) investigation led to the discovery of the nicotinoyl guanidine 22 as a potent FXa inhibitor (FXa IC(50)=4 nM, EC(2xPT)=7 microM). However, the potent CYP3A4 inhibition activity (IC(50)=0.
View Article and Find Full Text PDFThe N,N'-disubstituted cyanoguanidine is an excellent bioisostere of the thiourea and ketene aminal functional groups. We report the design and synthesis of a novel class of cyanoguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The SAR studies led to the discovery of compound 4 (BMS-269223, K(i)=6.
View Article and Find Full Text PDFAn indole-based P1 moiety was incorporated into a previously established factor Xa inhibitor series. The indole group was designed to hydrogen-bond with the carbonyl of Gly218, while its 3-methyl or 3-chloro substituent was intended to interact with Tyr228. These interactions were subsequently observed in the X-ray crystal structure of compound 18.
View Article and Find Full Text PDF3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2007
The design and synthesis of a novel class of amino(methyl) pyrrolidine-based sulfonamides as potent and selective FXa inhibitors is reported. The amino(methyl) pyrrolidine scaffolds were designed based on the proposed bioisosterism to the piperazine core in known FXa inhibitors. The SAR study led to compound 15 as the most potent FXa inhibitor in this series, with an IC(50) of 5.
View Article and Find Full Text PDFAn open question in protein homology modeling is, how well do current modeling packages satisfy the dual criteria of quality of results and practical ease of use? To address this question objectively, we examined homology-built models of a variety of therapeutically relevant proteins. The sequence identities across these proteins range from 19% to 76%. A novel metric, the difference alignment index (DAI), is developed to aid in quantifying the quality of local sequence alignments.
View Article and Find Full Text PDFN,N'-Disubstituted ketene aminals are good bioisosteres of thiourea functional groups. We report the design and synthesis of a novel class of ketene aminal-based lactam derivatives as potent and orally active FXa inhibitors.
View Article and Find Full Text PDFDipeptidyl peptidase IV (DPP4) is a multifunctional type II transmembrane serine peptidase which regulates various physiological processes, most notably plasma glucose homeostasis by cleaving peptide hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Inhibition of DPP4 is a potentially valuable therapy for type 2 diabetes. Synthesis and structure-activity relationships of a series of substituted diprolyl nitriles are described, leading to the identification of compound 1 with a measured DPP4 K(i) of 3.
View Article and Find Full Text PDFA series of inhibitors of mammalian 15-lipoxygenase based on tryptamine and homotryptamine scaffolds is described. Compounds with aryl substituents at C-2 of the indole core of tryptamine and homotryptamine sulfonamides (e.g.
View Article and Find Full Text PDFA series of methanoprolinenitrile-containing dipeptide mimetics were synthesized and assayed as inhibitors of the N-terminal sequence-specific serine protease dipeptidyl peptidase IV (DPP-IV). The catalytic action of DPP-IV is the principle means of degradation of glucagon-like peptide-1, a key mediator of glucose-stimulated insulin secretion, and DPP-IV inhibition shows clinical benefit as a novel mechanism for treatment of type 2 diabetes. However, many of the reversible inhibitors to date suffer from chemical instability stemming from an amine to nitrile intramolecular cyclization.
View Article and Find Full Text PDFAn important element of any structure-based virtual screening (SVS) technique is the method used to orient the ligands in the target active site. This has been a somewhat overlooked issue in recent SVS validation studies, with the assumption being made that the performance of an algorithm for a given set of orientation sampling settings will be representative for the general behavior of said technique. Here, we analyze five different SVS targets using a variety of sampling paradigms within the DOCK, GOLD and PROMETHEUS programs over a data set of approximately 10,000 noise compounds, combined with data sets containing multiple active compounds.
View Article and Find Full Text PDF