Background: The introduction of therapeutics for Alzheimer's disease has led to increased interest in precisely quantifying amyloid-β (Aβ) burden for diagnosis, treatment monitoring, and further clinical research. Recent positron emission tomography (PET) hardware innovations including digital detectors have led to superior resolution and sensitivity, improving quantitative accuracy. However, the effect of PET scanner on Centiloid remains relatively unexplored and is assumed to be minimized by harmonizing PET resolutions.
View Article and Find Full Text PDFIntroduction: Melanopsin is a photopigment with roles in mediating sleep and circadian-related processes, which are often disrupted in Alzheimer's disease (AD). Melanopsin also impacts cognition and synaptogenesis. This study investigated the associations between melanopsin genetic variants, sleep, and markers of brain health.
View Article and Find Full Text PDFSleep discrepancy (negative discrepancy reflects worse self-reported sleep than objective measures, such as actigraphy, and positive discrepancy the opposite) has been linked to adverse health outcomes. This study is first to investigate the relationship between sleep discrepancy and brain glucose metabolism (assessed globally and regionally via positron emission tomography), and to evaluate the contribution of insomnia severity and depressive symptoms to any associations. Using data from cognitively unimpaired community-dwelling older adults ( = 68), cluster analysis was used to characterise sleep discrepancy (for total sleep time (TST), wake after sleep onset (WASO), and sleep efficiency (SE)), and logistic regression was used to explore sleep discrepancy's associations with brain glucose metabolism, while controlling for insomnia severity and depressive symptoms.
View Article and Find Full Text PDFBlood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases.
View Article and Find Full Text PDFBackground: Tau accumulation in Alzheimer's disease is associated with short term clinical progression and faster rates of cognitive decline in individuals with high amyloid-β deposition. Defining an optimal threshold of tau accumulation predictive of cognitive decline remains a challenge.
Objective: We tested the ability of regional tau PET sensitivity and specificity thresholds to predict longitudinal cognitive decline.
Introduction: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis.
Methods: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data.
Background: Alzheimer's disease (AD) is the most common cause of dementia. While preclinical studies have shown benefits of glucagon-like peptide 1 receptor agonists (GLP-1 RA) in targeting core AD pathology, clinical studies are limited.
Objective: A systematic review was performed to evaluate GLP-1 RAs in AD for their potential to target core AD pathology and improve cognition.
Introduction: This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aβ) accumulation.
Methods: Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.
Background: 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates intracellular cortisol and its inhibition by the small molecule inhibitor, Xanamem™, may provide a disease-modifying strategy for Alzheimer's disease (AD). Animal models suggest a range of 30-60% enzyme inhibition may suffice to provide neuroprotection.
Objective: To determine the regional brain occupancy of 11β-HSD1 by Xanamem™ in cognitively normal participants (CN) and mild cognitive impairment (MCI)/mild AD patients to investigate potential dosing ranges for future efficacy studies.
Background And Objectives: While the highest prevalence of dementia occurs in individuals older than 80 years, most imaging studies focused on younger populations. The rates of β-amyloid (Aβ) accumulation and the effect of Alzheimer disease (AD) pathology on progression to dementia in this age group remain unexplored. In this study, we examined the relationship between changes in Aβ deposition over time and incident dementia in nondemented individuals followed during a period of 11 years.
View Article and Find Full Text PDFThe accumulation of amyloid-β (Aβ) plaques in the brain is considered a hallmark of Alzheimer's disease (AD). Mathematical modeling, capable of predicting the motion and accumulation of Aβ, has obtained increasing interest as a potential alternative to aid the diagnosis of AD and predict disease prognosis. These mathematical models have provided insights into the pathogenesis and progression of AD that are difficult to obtain through experimental studies alone.
View Article and Find Full Text PDFIntroduction: The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aβ) over 15 years in a cohort of cognitively unimpaired older adults.
Methods: PA and Aβ measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aβ.
J Prev Alzheimers Dis
November 2023
Background: Plasma p217+tau has shown high concordance with cerebrospinal fluid (CSF) and positron emission tomography (PET) measures of amyloid-β (Aβ) and tau in Alzheimer's Disease (AD). However, its association with longitudinal cognition and comparative performance to PET Aβ and tau in predicting cognitive decline are unknown.
Objectives: To evaluate whether p217+tau can predict the rate of cognitive decline observed over two-year average follow-up and compare this to prediction based on Aβ (18F-NAV4694) and tau (18F-MK6240) PET.
Background And Objectives: There are limited validated biomarkers in Parkinson disease (PD) which substantially hinders the ability to monitor disease progression and consequently measure the efficacy of disease-modifying treatments. Imaging biomarkers, such as vesicular monoamine transporter type 2 (VMAT2) PET, enable enhanced diagnostic accuracy and detect early neurodegenerative changes associated with prodromal PD. This study sought to assess whether F-AV-133 VMAT2 PET is sensitive enough to monitor and quantify disease progression over a 2-year window.
View Article and Find Full Text PDFDysfunction of the cholinergic basal forebrain (BF) system and amyloid-β (Aβ) deposition are early pathological features in Alzheimer's disease (AD). However, their association in early AD is not well-established. This study investigated the nature and magnitude of volume loss in the BF, over an extended period, in 516 older adults who completed Aβ-PET and serial magnetic resonance imaging scans.
View Article and Find Full Text PDFA methodology for determining tau PET thresholds is needed to confidently detect early tau deposition. We compared multiple threshold-determining methods in participants who underwent either F-flortaucipir or F-MK-6240 PET scans. F-flortaucipir ( = 798) and F-MK-6240 ( = 216) scans were processed and sampled to obtain regional SUV ratios.
View Article and Find Full Text PDFIntroduction: The Centiloid (CL) project was developed to harmonize the quantification of amyloid beta (Aβ) positron emission tomography (PET) scans to a unified scale. The CL neocortical mask was defined using C Pittsburgh compound B (PiB), overlooking potential differences in regional distribution among Aβ tracers. We created a universal mask using an independent dataset of five Aβ tracers, and investigated its impact on inter-tracer agreement, tracer variability, and group separation.
View Article and Find Full Text PDFIntroduction: Recently, an increasing number of tau tracers have become available. There is a need to standardize quantitative tau measures across tracers, supporting a universal scale. We developed several cortical tau masks and applied them to generate a tau imaging universal scale.
View Article and Find Full Text PDFPurpose: Amyloid positron emission tomography (PET) with [F]florbetaben (FBB) is an established tool for detecting Aβ deposition in the brain in vivo based on visual assessment of PET scans. Quantitative measures are commonly used in the research context and allow continuous measurement of amyloid burden. The aim of this study was to demonstrate the robustness of FBB PET quantification.
View Article and Find Full Text PDFObjective: Neurofibrillary tangles are present in a proportion of people with dementia with Lewy bodies and may be associated with worse cognition. Recent advances in biomarkers for Alzheimer's disease include second-generation tau positron emission tomography as well as the detection of phosphorylated tau at threonine 181 (p-tau181) in plasma. This study aimed to investigate tau in people with dementia with Lewy bodies using a second-generation tau positron emission tomography tracer as well as plasma p-tau181.
View Article and Find Full Text PDF