For the first time an azo functionality was covalently introduced into a MOF by post-synthetic modification. The reaction of Cr-MIL-101-NH(2) with p-phenylazobenzoylchloride (1) and 4-(phenylazo)phenylisocyanate (2) as the reactants led to the compounds Cr-MIL-101_amide and Cr-MIL-101_urea, with the azo groups protruding into the mesoporous cages. XRPD and N(2) sorption measurements confirm the intactness of the framework and the successful covalent modification was proven by IR- and NMR-spectroscopy.
View Article and Find Full Text PDFWe synthesized a porous twofold interpenetrated MOF [Zn(2)(NDC)(2)(1)] (coined CAU-5) using 3-azo-phenyl-4,4'-bipyridine (1), 2,6-naphthalenedicarboxylic acid, and Zn(NO(3))(2)·6H(2)O. The azo-functionality protrudes into the pores, and can be switched, by irradiation with UV light (365 nm), from the thermodynamically stable trans-isomer to the cis-isomer. Back-switching was achieved thermally and with an irradiation wavelength of λ(max) = 440 nm.
View Article and Find Full Text PDFWe present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility.
View Article and Find Full Text PDFThe photoisomerization of self-assembled monolayers of azobenzene-containing alkanethiols, as well as of mixed monolayers of these substances with n-alkanethiol spacer molecules on Au surfaces, was studied by photoelectrochemical measurements and surface plasmon resonance spectroscopy. A strong dependence on the molecular structure of the adsorbates was found, specifically on the linker between the azobenzene moiety and the alkanethiol: while molecules with an amide group were photoinactive, those with an ether group exhibited pronounced, reversible photoisomerization in pure and mixed adlayers. Both trans-cis and cis-trans isomerization followed first-order kinetics with time constants that suggest high quantum efficiencies for these processes.
View Article and Find Full Text PDFSelf-assembled monolayers of azobenzene-containing thiols on smooth Au(111) surfaces were studied by gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS). By adsorption of colloidal Au nanoparticles on top of the organic adlayer highly reproducible spectra with strongly enhanced intensities are obtained. The observed bands indicate a trans conformation of the azobenzene moieties and are in agreement with structural data for the molecular layer.
View Article and Find Full Text PDF