Publications by authors named "Dorcas A Annan"

Background: Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities.

View Article and Find Full Text PDF

Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known.

View Article and Find Full Text PDF

Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine-rich proteoglycan, is highly expressed in TECs.

View Article and Find Full Text PDF

Background: Biglycan is a proteoglycan found in the extracellular matrix. We have previously shown that biglycan is secreted from tumor endothelial cells and induces tumor angiogenesis and metastasis. However, the function of stroma biglycan in breast cancer is still unclear.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs).

View Article and Find Full Text PDF

Tumor endothelial cells (TEC) lining tumor blood vessels actively contribute to tumor progression and metastasis. In addition to tumor cells, TEC may develop drug resistance during cancer treatment, allowing the tumor cells to survive chemotherapy and metastasize. We previously reported that TECs resist paclitaxel treatment via upregulation of ABCB1.

View Article and Find Full Text PDF

Going from is a simplified description of translational research, with the ultimate goal being to improve the health status of mankind. Tumor endothelial cells (TECs) perform angiogenesis to support the growth, establishment, and dissemination of tumors to distant organs. TECs have various features that distinguish them from normal endothelial cells, which include alterations in gene expression patterns, higher angiogenic and metabolic activities, and drug resistance tendencies.

View Article and Find Full Text PDF

Background: Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood.

Methodology: The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Tumor blood vessels supply nutrients and oxygen to tumor cells for their growth and provide routes for them to enter circulation. Thus, angiogenesis, the formation of new blood vessels, is essential for tumor progression and metastasis. Tumor endothelial cells (TECs) that cover the inner surfaces of tumor blood vessels reportedly show phenotypes distinct from those of their normal counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor angiogenesis research benefits from studying cultured endothelial cells, specifically tumor endothelial cells (TECs) and normal endothelial cells (NECs), which have significant differences in function.
  • To address the limited availability and lifespan of primary human TECs, researchers have created immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) using specific viral infections that extend their growth potential.
  • The h-imTECs maintain their unique characteristics and respond to antiangiogenic treatment, making them a promising resource for drug screening and studying tumor angiogenesis.
View Article and Find Full Text PDF

Tumor progression depends on the process of angiogenesis, which is the formation of new blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the balance between angiogenic activators and inhibitors within the tumor microenvironment.

View Article and Find Full Text PDF

Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of most common cancers in urogenital organs. Although recent experimental and clinical studies have shown the immunogenic properties of ccRCC as illustrated by the clinical sensitivities to various immunotherapies, the detailed immunoregulatory machineries governing the tumorigenicity of human ccRCC remain largely obscure. In this study, we demonstrated the clinical significance and functional relevance of T-cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3) expressed on tumor cells and myeloid cells in patients with ccRCC.

View Article and Find Full Text PDF