Publications by authors named "Dorati R"

The fight against infectious disease has remained an ever-evolving challenge in the landscape of healthcare. The ability of pathogens to develop resistance against conventional drug treatments has decreased the effectiveness of therapeutic interventions, and antibiotic resistance is recognized as one of the main challenges of our time. The goal of this systematic review paper is to provide insight into the research papers published on innovative nanosized drug delivery systems (DDSs) based on gentamycin and vancomycin and to discuss the opportunity of their repurposing through nano DDS formulations.

View Article and Find Full Text PDF

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies.

View Article and Find Full Text PDF

Poly (glycerol sebacate) is a widely studied elastomeric copolymer obtained from the polycondensation of two bioresorbable monomers, glycerol and sebacic acid. Due to its biocompatibility and the possibility to tailor its biodegradability rate and mechanical properties, PGS has gained lots of interest in the last two decades, especially in the soft tissue engineering field. Different synthetic approaches have been proposed, ranging from classic thermal polyesterification and curing to microwave-assisted organic synthesis, UV crosslinking and enzymatic catalysis.

View Article and Find Full Text PDF

Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid-fluid interface and indeed the mass transfer.

View Article and Find Full Text PDF

In this work, an innovative and accurate affinity capillary electrophoresis (ACE) method was set up to monitor the complexation of aqueous MIP nanogels (NGs) with model cancer-related antigens. Using α2,6'- and α2,3'-sialyllactose as oversimplified cancer biomarker-mimicking templates, NGs were synthesized and characterized in terms of size, polydispersity, and overall charge. A stability study was also carried out in order to select the best storage conditions and to ensure product quality.

View Article and Find Full Text PDF

The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.

View Article and Find Full Text PDF

Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 /), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds.

View Article and Find Full Text PDF

Background: To make the regenerative process more effective and efficient, tissue engineering (TE) strategies have been implemented. Three-dimensional scaffolds (electrospun or 3D-printed), due to their suitable designed architecture, offer the proper location of the position of cells, as well as cell adhesion and the deposition of the extracellular matrix. Moreover, the possibility to guarantee a concomitant release of drugs can promote tissue regeneration.

View Article and Find Full Text PDF

In this work, four different active encapsulation methods, microfluidic (MF), sonication (SC), freeze-thawing (FT), and electroporation (EP), were investigated to load a model protein (bovine serum albumin-BSA) into neutral liposomes made from 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):cholesterol (Chol) and charged liposomes made from DSPC:Chol:Dioleoyl-3-trimethylammonium propane (DOTAP), DSPC:Chol:1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and DSPC:Chol:phosphatidylethanolamine (PE). The aim was to increase the protein encapsulation efficiency (EE%) by keeping the liposome size below 200 nm and the PDI value below 0.7, which warrants a nearly monodisperse preparation.

View Article and Find Full Text PDF

Vascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions.

View Article and Find Full Text PDF
Article Synopsis
  • There is a big problem with not having enough organs for people who need transplants.
  • Scientists are trying different ways to make fake organs using methods like 3D printing and special materials to create “scaffolds.”
  • These new hybrid scaffolds work really well, helping cells stick and grow, and they are similar in strength to real body tissues, which could help save lives in the future.
View Article and Find Full Text PDF

Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds.

View Article and Find Full Text PDF

Graphene is a 2D crystal composed of carbon atoms in a hexagonal arrangement. From their isolation, graphene nanoplatelets (nCD) have revolutionized material science due to their unique properties, and, nowadays, there are countless applications, including drug delivery, biosensors, energy storage, and tissue engineering. Within this work, nCD were combined with PLA, a widely used and clinically relevant thermoplastic polymer, to produce advanced composite texturized electrospun fabric for the next-generation devices.

View Article and Find Full Text PDF

Nowadays, antimicrobial resistance (AMR) represents a challenge for antibiotic therapy, mostly involving Gram-negative bacteria. Among the strategies activated to overcome AMR, the repurposing of already available antimicrobial molecules by encapsulating them in drug delivery systems, such as nanoparticles (NPs) and also engineered NPs, seems to be promising. Tobramycin is a powerful and effective aminoglycoside, approved for complicated infections and reinfections and indicated mainly against Gram-negative bacteria, such as , , , , , , , and species.

View Article and Find Full Text PDF
Article Synopsis
  • - Squamous cell carcinoma is the most prevalent type of cancer in the head and neck region, often requiring innovative treatments when traditional methods fail for recurrent or metastatic cases.
  • - Electroporation (EP) is a promising, less invasive cancer treatment method that temporarily permeabilizes tumor cell membranes to enhance the uptake of chemotherapy drugs like bleomycin and cisplatin, leading to more effective tumor cell death.
  • - Electrochemotherapy (ECT) has been shown to be especially effective for skin and mucosal cancers that can't be surgically removed, with ongoing research focused on improving ECT's efficacy specifically for head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDF

Nanomedicine consists in the application of nanotechnology in medicine to revolutionize the healthcare sector through transformative new diagnostic and therapeutic tools. In this field, nanostructures or nanocarriers (i.e.

View Article and Find Full Text PDF

This study is a proof of concept performed to evaluate process parameters affecting shape memory effect of copolymer poly-L-lactide-co-poly-ε-caprolactone (PLA:PCL) 70:30 ratio based nanofibrous scaffolds. A design of experiment (DOE) statistical approach was used to define the interaction between independent material and process variables related to electrospun scaffold manufacturing, such as polymer solution concentration (w/v%), spinning time (min), and needle size (Gauge), and their influence on Rf% (ability of the scaffold to maintain the induced temporary shape) and Rr% (ability of the scaffold to recover its original shape) outputs. A mathematical model was obtained from DOE useful to predict scaffold Rf% and Rr% values.

View Article and Find Full Text PDF

Biofiber is a new generation of highly absorbent, and textured bandage with patented fiber technology. Biofiber has a sophisticated texture that provides an optimum balance of moisture, flexibility, and conformability, and it has been developed with specific properties to treat complex injuries like burns. The dressing has been designed to be completely adaptable to human anatomy, and it can be fitted to any part of the body, adapting to all curves and jointures, as well as fitting the facial features.

View Article and Find Full Text PDF

This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin.

View Article and Find Full Text PDF

Pain is a constant in our lives. The efficacy of drug therapy administered by the parenteral route is often limited either by the physicochemical characteristics of the drug itself or its adsorption-distribution-metabolism-excretion (ADME) mechanisms. One promising alternative is the design of innovative drug delivery systems that can improve the pharmacokinetics |(PK) and/or reduce the toxicity of traditionally used drugs.

View Article and Find Full Text PDF

Acquired congenital esophageal malformations, such as malignant esophageal cancer, require esophagectomy resulting in full thickness resection, which cannot be left untreated. The proposed approach is a polymeric full-thickness scaffold engineered with mesenchymal stem cells (MSCs) to promote and speed up the regeneration process, ensuring adequate support and esophageal tissue reconstruction and avoiding the use of autologous conduits. Copolymers poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) 70:30 and 85:15 ratio were chosen to prepare electrospun tubular scaffolds.

View Article and Find Full Text PDF

Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM).

View Article and Find Full Text PDF

The current study is a preliminary investigation on the use of stereolithography 3D printing technology in the field of personalized medicines and specifically for delivering drugs locally, which can for example usefully be applied to ear infections. The main aim is the development of drug-loaded implants for the treatment of ear diseases, to improve patient compliance and to overcome the limitations of current delivery approaches. Multiple prototypes of implant geometries have been created and printed using a flexible resin containing 0.

View Article and Find Full Text PDF

Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes.

View Article and Find Full Text PDF

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death.

View Article and Find Full Text PDF