Background & Aims: Colorectal cancer (CRC) is thought to arise when the cumulative mutational burden within colonic crypts exceeds a certain threshold that leads to clonal expansion and ultimately neoplastic transformation. Therefore, quantification of the fixation and subsequent expansion of somatic mutations in normal epithelium is key to understanding colorectal cancer initiation. The aim of the present study was to determine how advantaged expansions can be accommodated in the human colon.
View Article and Find Full Text PDFDevelopment of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones.
View Article and Find Full Text PDFSomatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described.
View Article and Find Full Text PDFVector-borne diseases are a major public health concern inflicting high levels of disease morbidity and mortality. Vector control is one of the principal methods available to manage infectious disease burden. One approach, releasing modified vectors (such as sterile or GM mosquitoes) Into the wild population has been suggested as an effective method of vector control.
View Article and Find Full Text PDFUnderdominance gene drives are frequency-dependent drives that aim to spread a desired homozygote genotype within a population. When the desired homozygote is released above a threshold frequency, heterozygote fitness disadvantage acts to drive the desired trait to fixation. Underdominance drives have been proposed as a way to control vector-borne disease through population suppression and replacement in a spatially contained and reversible way-benefits that directly address potential safety concerns with gene drives.
View Article and Find Full Text PDFBackground: The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes.
View Article and Find Full Text PDFThe attenuation of a plane acoustic wave incident on a flat impedance surface in a sheared and viscous fluid is investigated numerically and asymptotically. Predictions of various boundary models of impedance surfaces in shear flow are tested by comparing their predicted reflection coefficient. It is found that viscosity has a significant effect, reducing the reflection of upstream propagating sound while increasing the reflection of cross-stream propagating sound.
View Article and Find Full Text PDF