Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene that provokes the synthesis of progerin, a mutant version of the nuclear protein lamin A that accelerates aging and precipitates death. The most clinically relevant feature of HGPS is the development of cardiac anomalies and severe vascular alterations, including massive loss of vascular smooth muscle cells, increased fibrosis, and generalized atherosclerosis. However, it is unclear if progerin expression in endothelial cells (ECs) causes the cardiovascular manifestations of HGPS.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in and mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. mice were undistinguishable from mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of mice.
View Article and Find Full Text PDFMutations in the gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (-DCM). The main clinical risks in -DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if mutations also cause vascular alterations that might contribute to the etiopathogenesis of -DCM, we generated and characterized mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing Lmna mice (G609G), both in resting conditions and after hypoxic stimulus.
View Article and Find Full Text PDFPopulation aging and age-related cardiovascular disease (CVD) are becoming increasingly prevalent worldwide, generating a huge medical and socioeconomic burden. The complex regulation of aging and CVD and the interaction between these processes are crucially dependent on cellular stress responses. Interferon-stimulated gene-15 (ISG15) encodes a ubiquitin-like protein expressed in many vertebrate cell types that can be found both free and conjugated to lysine residues of target proteins a post-translational process termed ISGylation.
View Article and Find Full Text PDFBackground: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life.
View Article and Find Full Text PDFAging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson-Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition.
View Article and Find Full Text PDFCells
March 2020
Cardiovascular disease (CVD) is the main cause of death worldwide, and aging is its leading risk factor. Aging is much accelerated in Hutchinson-Gilford progeria syndrome (HGPS), an ultra-rare genetic disorder provoked by the ubiquitous expression of a mutant protein called progerin. HGPS patients die in their teens, primarily due to cardiovascular complications.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo c.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2018
We show that a calculation using density functional theory (DFT) in the generalized gradient approximation (GGA) supplemented by an explicit Coulomb interaction term between correlated electrons (GGA+U), can accurately describe structural properties of (1) the room temperature phases of U, Np, Pu, Am and Cm, and (2) the α, β, γ, δ and ϵ phases of plutonium, as does the combination of GGA with dynamical mean field theory (DMFT). It thus changes the view on the role of electronic interaction in these systems and opens the way to fast calculations of structural properties in actinides metallic system. We use ab initio values of effective Coulomb interactions and underline that Hund's exchange and spin-orbit coupling are of utmost importance in these calculations.
View Article and Find Full Text PDFDifferentiation of naive CD4 T-cells into functionally distinct T helper (Th) subsets is critical to immunity against pathogen infection. Little is known about the role of signals emanating from the nuclear envelope for T-cell differentiation. The nuclear envelope protein lamin A/C is induced in naive CD4 T-cells upon antigen recognition and acts as a link between the nucleus and the plasma membrane during T-cell activation.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2017
We use first-principles calculations to provide direct evidence of the effect of aluminum, gallium, iron and uranium on the dynamical stability of δ-plutonium. We first show that the δ phase is dynamically unstable at low temperature, as seen in experiments, and that this stability directly depends on the plutonium 5f orbital occupancies. Then, we demonstrate that both aluminum and gallium stabilize the δ phase, contrary to iron.
View Article and Find Full Text PDFCurr Opin Cell Biol
June 2017
Lamin A is a nuclear intermediate filament protein with important structural and regulatory roles in most differentiated mammalian cells. Excessive accumulation of its precursor prelamin A or the mutant form called 'progerin' causes premature aging syndromes. Progeroid 'laminopathies' are characterized by severe cardiovascular problems (cardiac electrical defects, vascular calcification and stiffening, atherosclerosis, myocardial infarction, and stroke) and premature death.
View Article and Find Full Text PDFBackground: Leucocyte telomere length (LTL) shortening is associated with cardiovascular ischemic events and mortality in humans, but data on its association with subclinical atherosclerosis are scarce. Whether the incidence and severity of subclinical atherosclerosis are associated with the abundance of critically short telomeres, a major trigger of cellular senescence, remains unknown.
Objectives: The authors conducted a cross-sectional exploration of the association between subclinical atherosclerosis burden and both average LTL and the abundance of short telomeres (%LTL<3 kb).
Methods for staining tissues with Oil Red O and hematoxylin-eosin are classical histological techniques that are widely used to quantify atherosclerotic burden in mouse tissues because of their ease of use, reliability, and the large amount of information they provide. These stains can provide quantitative data about the impact of a genetic or environmental factor on atherosclerotic burden and on the initiation, progression, or regression of the disease, and can also be used to evaluate the efficacy of drugs designed to prevent or treat atherosclerosis. This chapter provides protocols for quantifying atherosclerotic burden in mouse aorta and aortic root, including methods for dissection, Oil Red O staining, hematoxylin-eosin staining, and image analysis.
View Article and Find Full Text PDFOver the last decade, a significant amount of work has been devoted to point defect behaviour in UO2 using approximations beyond density functional theory (DFT), in particular DFT + U and hybrid functionals for correlated electrons. We review the results of these studies from calculations of bulk UO2 properties to the more recent determination of activation energies for self-diffusion in UO2, as well as a comparison with their experimental counterparts. We also discuss the efficiency of the three known methods developed to circumvent the presence of metastable states, namely occupation matrix control, U-ramping and quasi-annealing.
View Article and Find Full Text PDFPrimary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins.
View Article and Find Full Text PDFMitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a maternally inherited mitochondrial syndrome characterized by seizures, migrainous headaches, lactic acidosis, vomiting, and recurrent stroke-like episodes. Patients often suffer from cognitive dysfunction of unclear pathogenesis. In this study, we explored a possible link between cognitive dysfunction and hippocampal expression of calbindin D(28KD) (CB), a high affinity calcium-binding protein, in four MELAS patients, using post mortem hippocampal tissues.
View Article and Find Full Text PDFMammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells.
View Article and Find Full Text PDFBecause deoxyribonucleoside triphosphates (dNTPs) are the critical substrates for DNA replication and repair, dNTP pools have been studied in context of multiple basic biochemical processes. Over the last 12 years, interest in dNTPs, and specifically the mitochondrial dNTP pools, has expanded to biomedical science because several mitochondrial diseases have been found to be caused by dysfunctions of several enzymes involved in dNTP catabolism or anabolism. Techniques to reliably measure mitochondrial dNTPs should be sensitive and specific to avoid interference caused by the abundant ribonucleotides.
View Article and Find Full Text PDFThe mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1(-) cells, a cell line devoid of endogenous thymidine kinase 1 (TK1).
View Article and Find Full Text PDFDeficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13.
View Article and Find Full Text PDFPrevious studies have revealed leucokinin (LK) expression in the brain and ventral ganglion of Drosophila CNS. One pair of protocerebrum neurons located in the lateral horn area (LHLK) surrounds the peduncles of the mushroom bodies while two pairs of subesophageal neurons (SELKs) project extended processes to the tritocerebrum and through a cervical connection to the ventral ganglion. There, axons of eight or nine pairs of abdominal (ABLK) neurons leave the CNS through the abdominal nerves and processes connecting each other ipsilaterally and contralaterally.
View Article and Find Full Text PDF