Publications by authors named "Dora Visnjic"

Acute myeloid leukemia (AML) is a heterogeneous group of hematological malignancies characterized by differentiation arrest, high relapse rates, and poor survival. The bone marrow (BM) microenvironment is recognized as a critical mediator of drug resistance and a primary site responsible for AML relapse. Our previous study reported that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induces AML cell differentiation by inhibiting pyrimidine synthesis and activating Checkpoint kinase 1.

View Article and Find Full Text PDF

Low-dose cytarabine (LDAC) is a standard therapy for elderly acute myeloid leukemia (AML) patients unfit for intensive chemotherapy. While high doses of cytarabine induce cytotoxicity, the precise mechanism of action of LDAC in AML remains elusive. studies have demonstrated LDAC-induced differentiation; however, such differentiation is seldom observed .

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by arrested differentiation making differentiation therapy a promising treatment strategy. Recent success of inhibitors of mutated isocitrate dehydrogenase (IDH) invigorated interest in differentiation therapy of AML so that several new drugs have been proposed, including inhibitors of dihydroorotate dehydrogenase (DHODH), an enzyme in pyrimidine synthesis. Cytarabine, a backbone of standard AML therapy, is known to induce differentiation at low doses, but the mechanism is not completely elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • Bendamustine is an alkylating agent, part of nitrogen mustard analogues, that was first synthesized nearly 60 years ago and approved for use in the US in 2008 for specific types of cancers.
  • It has shown promising results in treating relapsed or refractory hematological cancers and exhibits synergistic effects with other cancer drugs, drawing renewed interest in its application.
  • The review highlights bendamustine's unique structure, its pharmacokinetics, mechanism of action, toxicity, and unexplored immune-modulating effects, encouraging more research into its potential in oncology.
View Article and Find Full Text PDF

All-trans retinoic acid (ATRA)-based therapy for acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML), is the most successful example of differentiation therapy. Although ATRA can induce differentiation in some non-APL AML cell lines and primary blasts, clinical results of adding ATRA to standard therapy in non-APL AML patients have been inconsistent, probably due to use of different regimens and lack of diagnostic tools for identifying which patients may be sensitive to ATRA. In this study, we exposed primary blasts obtained from non-APL AML patients to ATRA to test for differentiation potential in vitro.

View Article and Find Full Text PDF

5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) has been one of the most commonly used pharmacological modulators of AMPK activity. The majority of early studies on the role of AMPK, both in the physiological regulation of metabolism and in cancer pathogenesis, were based solely on the use of AICAr as an AMPK-activator. Even with more complex models of AMPK downregulation and knockout being introduced, AICAr remained a regular starting point for many studies focusing on AMPK biology.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Background: All-trans retinoic acid (ATRA)-based treatment of acute promyelocytic leukemia (APL) is the most successful pharmacological treatment of acute myeloid leukemia (AML). Recent development of inhibitors of mutated isocitrate dehydrogenase and dihydroorotate dehydrogenase (DHODH) has revived interest in differentiation therapy of non-APL AML. Our previous studies demonstrated that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induced differentiation of monocytic cell lines by activating the ATR/Chk1 via pyrimidine depletion.

View Article and Find Full Text PDF

Metabolic pathways play important roles in proliferation and differentiation of malignant cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr), a precursor in purine biosynthesis and a well-established activator of AMP-activated protein kinase (AMPK), induces widespread metabolic alterations and is commonly used for dissecting the role of metabolism in cancer. We have previously reported that AICAr promotes differentiation and inhibits proliferation of myeloid leukemia cells.

View Article and Find Full Text PDF

Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic.

View Article and Find Full Text PDF

Pharmacological modulators of AMP-dependent kinase (AMPK) have been suggested in treatment of cancer. The biguanide metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) have been reported to inhibit proliferation of solid tumors and hematological malignancies, but their role in differentiation is less explored. Our previous study demonstrated that AICAR alone induced AMPK-independent expression of differentiation markers in monocytic U937 leukemia cells, and no such effects were observed in response to metformin.

View Article and Find Full Text PDF

Synthesis of inositol pyrophosphates through activation of Kcs1 plays an important role in the signalling response required for cell cycle progression after mating pheromone arrest. Overexpression of Kcs1 doubled the level of inositol pyrophosphates when compared to wild type cells and 30 min following the release from α-factor block further increase in inositol pyrophosphates was observed, which resulted that cells overexpressing Kcs1 reached G2/M phase earlier than wild type cells. Similar effect was observed in ipk1Δ cells, which are unable to synthesize IP6-derived inositol pyrophosphates (IP7 and IP8) but will synthesize IP5-derived inositol pyrophosphates (PP-IP4 and (PP)2-IP3).

View Article and Find Full Text PDF

Arsenic trioxide (ATO) has potent clinical activity in the treatment of patients with acute promyelocytic leukemia (APL), but is much less efficacious in acute myeloid leukemia (AML) lacking t(15;17) translocation. Recent studies have indicated that the addition of mammalian target of rapamycin (mTOR) inhibitors may increase the sensitivity of malignant cells to ATO. The aim of the present study was to test for possible synergistic effects of ATO and rapamycin at therapeutically achievable doses in non-APL AML cells.

View Article and Find Full Text PDF

Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells.

View Article and Find Full Text PDF

Several studies have demonstrated the activation of phosphoinositide-specific phospholipase C (Plc) in nuclei of mammalian cells during synchronous progression through the cell cycle, but the downstream targets of Plc-generated inositol 1,4,5-trisphosphate are poorly described. Phospholipid signaling in the budding yeast Saccharomyces cerevisiae shares similarities with endonuclear phospholipid signaling in mammals, and many recent studies point to a role for inositol phosphates, including InsP(5), InsP(6), and inositol pyrophosphates, in mediating the action of Plc. In this study, we investigated the changes in inositol phosphate levels in α-factor-treated S.

View Article and Find Full Text PDF

Rapamycin and its derivatives have been proposed in the treatment of leukemia based on their cytostatic effects, but their possible role in differentiation therapy is less explored. The aim of the present study was to investigate the possible beneficial effects of the combination of rapamycin and dimethyl sulfoxide (DMSO) on growth arrest and differentiation of acute myelogenous leukemia (AML) cells. In myeloblastic HL-60, promyelocytic NB4, monocytic U937, immature KG-1 and erythro-megakaryocytic K562 cell lines, rapamycin alone had modest inhibitory effects, DMSO inhibited proliferation in a dose-dependent manner, and the combination of rapamycin and DMSO reduced the number of viable cells significantly more than either agent alone.

View Article and Find Full Text PDF

A novel strategy has been suggested to enhance rapamycin-based cancer therapy through combining mammalian target of rapamycin (mTOR)-inhibitors with an inhibitor of the phosphatydilinositol 3-kinase PI3K/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. However, recent study demonstrated the potentiating effect of rapamycin on all-trans-retinoic acid (ATRA)-mediated differentiation of acute myelogenous leukemia (AML) cells, prompting us to investigate the effects of longitudinal inhibition of PI3K/Akt/mTOR signaling pathway on both proliferation and differentiative capacity of AML. In NB4, HL-60, U937 and K562 cell lines, rapamycin exerted minimal antiproliferative effects, and combining PI3K inhibitor LY 294002 and rapamycin inhibited proliferation more than LY 294002 alone.

View Article and Find Full Text PDF

Although the class II phosphoinositide 3-kinase enzymes PI3K-C2alpha and PI3K-C2beta act acutely downstream of cell surface receptors they have also been localized to nuclei in mammalian cells. As with the class I PI3K enzymes, the relationship between the pools of enzyme present in cytoplasm and nuclei remains poorly understood. In this study we test the hypothesis that PI3K-C2beta translocates to nuclei in response to growth factor stimulation.

View Article and Find Full Text PDF

The pharmacological inhibitors of extracellular signal-regulated kinase (ERK) have been suggested as a novel molecular target-based therapy for acute myeloid leukemia. Several studies have established the role of ERK in cell cycle progression from G(1) to S phase in response to mitogen, but the role of ERK after the restriction point is less clarified. In this study, we used models of aphidicolin and nocodazole-synchronized HL-60 and NB4 leukemia cell lines to determine the kinetics of ERK activity during the progression of the cell cycle and to test the effects of commercially available inhibitors on G(2)/M progression of synchronized leukemia cells.

View Article and Find Full Text PDF

Over the last 20 years, numerous studies have demonstrated the existence of nuclear phosphoinositide signaling distinct from the one at the plasma membrane. The activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphoinositide 3-kinase (PI3K), the generation of diacylglycerol, and the accumulation of the 3-phosphorylated phosphoinositides have been documented in the nuclei of different cell types. In this review, we summarize some recent studies of the subnuclear localization, mechanisms of activation, and the possible physiological roles of the nuclear PI-PLC and PI-3 kinases in the regulation of cell cycle, survival, and differentiation.

View Article and Find Full Text PDF

Phosphatidylinositol-specific phospholipase C (PI-PLC) is activated in cell nuclei during the cell cycle progression. We have previously demonstrated two peaks of an increase in the nuclear PI-PLC activities in nocodazole-synchronized HL-60 cells. In this study, the activity of nuclear PI-PLC was investigated in serum-stimulated HL-60 cells.

View Article and Find Full Text PDF

In the nuclear matrix harvested 20 h after partial hepatectomy, an increase in immunoprecipitable PI3K-C2beta activity is observed, which is sensitive to wortmannin (10 Mm) and shows strong preference for PtdIns over PtdIns(4)P as a substrate. On western blots PI3K-C2beta revealed a single immunoreactive band of 180 kD, whereas 20 h after partial hepatectomy gel shift of 18kDa was noticed in the nuclear matrix, suggesting that observed activation of enzyme is achieved by proteolysis. As it is know that PI3K-C2alpha is associated with nuclear speckles [Didichenko SA, Thelen M.

View Article and Find Full Text PDF

In this study, the activity of nuclear phosphatidylinositol-specific phosholipase C (PI-PLC) was investigated in HL-60 cells blocked at G(2)/M phase by the addition of nocodazole, and released into medium as synchronously progressing cells. Two peaks of an increase in the nuclear PI-PLC activities were detected; an early peak reached a maximum at 1 h after release from the nocodazole block, and a second increase was detected at 8.5 h after the release.

View Article and Find Full Text PDF

Phospholipase C (PLC) was purified from the membrane-depleted rat liver nuclei. About 60% of the total PLC-activity corresponded to beta1b isoform, 30% to PLC-gamma1 and less than 10% to PLC-delta1. PLC-beta1b and -gamma1 were found in the nuclear matrix, while PLC-delta1 was detected in the chromatin.

View Article and Find Full Text PDF

We previously reported a transgenic mouse model expressing herpesvirus thymidine kinase (TK) gene under the control of a 2.3-kilobase fragment of the rat collagen alpha1 type I promoter (Col2.3 Delta TK).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2vprifj75see7r88umknu4prqjcg7nqd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once