Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.
View Article and Find Full Text PDFSchizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry.
View Article and Find Full Text PDFSomatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization.
View Article and Find Full Text PDFFront Neural Circuits
January 2022
The pioneering work by von Economo in 1925 on the cytoarchitectonics of the cerebral cortex revealed a specialized and unique cell type in the adult human fronto-insular (FI) and anterior cingulate cortex (ACC). In modern studies, these neurons are termed von Economo neurons (VENs). In his work, von Economo described them as stick, rod or corkscrew cells because of their extremely elongated and relatively thin cell body clearly distinguishable from common oval or spindle-shaped infragranular principal neurons.
View Article and Find Full Text PDFAim: To analyze axon morphology on rapid Golgi impregnated pyramidal neurons in the dorsolateral prefrontal cortex in schizophrenia.
Methods: Postmortem brain tissue from five subjects diagnosed with schizophrenia and five control subjects without neuropathological findings was processed with the rapid Golgi method. Layer III and layer V pyramidal neurons from Brodmann area 9 were chosen in each brain for reconstruction with Neurolucida software.
Von Economo neurons (VENs) are modified pyramidal neurons characterized by an extremely elongated rod-shaped soma. They are abundant in layer V of the anterior cingulate cortex (ACC) and fronto-insular cortex (FI) of the human brain, and have long been described as a human-specific neuron type. Recently, VENs have been reported in the ACC of apes and the FI of macaque monkeys.
View Article and Find Full Text PDFThe human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass.
View Article and Find Full Text PDFAim: To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development.
Methods: We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018.
Purpose: The purpose of the study was to estimate the size and bone thickness at the margin of the foramen magnum in a pediatric population.
Methods: Sixty occipital bone specimens from the collection of macerated skulls at the Department of Anatomy, University of Zagreb, were examined and measured using a vernier scale/caliper. For the purpose of analysis, specimens were divided into two age groups: 1-6 years and 7-18 years of age (before and after the fusion of ossification centers in the occipital bone).