The industrial application and environmental release of nickel oxide NPs (NiO NPs) is increasing, but the details of their relationship with plants are largely unknown. In this work, the cellular, tissue, organ, and molecular level responses of three ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca grown in the presence of high doses of NiO NP (250 mg/L and 500 mg/L) were studied. All three ecotypes showed a similar accumulation of Ni in the presence of nano Ni, and in the case of NiO NPs, the root-to-shoot Ni translocation was slighter compared to the bulk Ni.
View Article and Find Full Text PDFCell wall-associated defence against zinc oxide nanoparticles (ZnO NPs) as well as nitro-oxidative signalling and its consequences in plants are poorly examined. Therefore, this study compares the effect of chemically synthetized ZnO NPs (~45 nm, 25 or 100 mg/L) on Brassica napus and Brassica juncea seedlings. The effects on root biomass and viability suggest that B.
View Article and Find Full Text PDFBoth nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model grown under stress-free conditions. Deficiency of SL synthesis or signaling ( and ) resulted in elevated NO and -nitrosothiol (SNO) levels due to decreased -nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO.
View Article and Find Full Text PDFSimilar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO-OA) have relevant physiological roles as signalling molecules also in plants. Although NO-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since (oilseed rape) is a crop with high oleic acid content, the abundance of NO-OA in its tissues can be assumed.
View Article and Find Full Text PDFDue to their release into the environment, zinc oxide nanoparticles (ZnO NPs) may come in contact with plants. In elevated concentrations, ZnO NPs induce reactive oxygen species (ROS) production, but the metabolism of reactive nitrogen species (RNS) and the consequent nitro-oxidative signalling has not been examined so far. In this work, Brassica napus and Brassica juncea seedlings were treated with chemically synthetized ZnO NPs (∼8 nm, 0, 25 or 100 mg/L).
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2020
Despite of its essentiality, nickel (Ni) in excess is toxic for plants partly due to the overproduction of reactive oxygen species (ROS) and the consequent increase in oxidative stress signalling. However, in Ni-stressed plants little is known about the signal transduction of reactive nitrogen species (RNS) and protein tyrosine nitration as the protein-level consequence of increased RNS formation. Our experiments compared the nickel accumulation and tolerance, the redox signalling and the protein nitration in the agar-grown Arabidopsis thaliana and Brassica juncea exposed to Ni (50 μM nickel chloride).
View Article and Find Full Text PDFRoots have a noteworthy plasticity: due to different stress conditions their architecture can change to favour seedling vigour and yield stability. The development of the root system is regulated by a complex and diverse signalling network, which besides hormonal factors, includes reactive oxygen (ROS) - and nitrogen species (RNS). The delicate balance of the endogenous signal system can be affected by various environmental stimuli, such as the excess of essential heavy metals, like zinc (Zn).
View Article and Find Full Text PDF