Background: Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are often associated with airway fluid acidification. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to impaired bicarbonate secretion contributing to CF airway pathology. Chronic cigarette smoke (CS) -the major cause of COPD- is reported to induce acquired CFTR dysfunction underlying airway acidification and inflammation.
View Article and Find Full Text PDFBackground: The pH of the airway surface liquid (ASL) plays a pivotal role in maintaining the proper function of the respiratory epithelium. In patients with cystic fibrosis (CF) acidic ASL has been observed. Thus, alkalinization of ASL itself might be beneficial in CF.
View Article and Find Full Text PDFThe extracellular pH, sodium and divalent cation concentrations influence the ATP-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)](i)). This elevation of [Ca(2+)](i) and activation of Ca(2+)-dependent Cl(-) channels represent a possible therapeutic approach in cystic fibrosis (CF). We investigated the changes of [Ca(2+)](i) in different external ionic environment, and P2X purinergic receptors (P2XRs) expression in the control and CF airway epithelial cells.
View Article and Find Full Text PDFWien Med Wochenschr
June 2009
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. Therefore, CF epithelial cells fail to transport, Cl(-) and water. Furthermore, the cessation of Cl(-) efflux across the apical membrane of CF pancreatic and biliary duct cells reduces HCO(3) (-) secretion as well.
View Article and Find Full Text PDF