Danon disease is a lethal X-linked genetic syndrome resulting from radical mutations in the LAMP2 gene. LAMP2 protein deficiency results in defective lysosomal function, autophagy arrest and a multisystem disorder primarily involving the heart, skeletal muscle and the central nervous system. Cardiomyopathy is the main cause of morbidity and mortality.
View Article and Find Full Text PDFBackground Human mutations in the X-linked lysosome-associated membrane protein-2 () gene can cause a multisystem Danon disease or a primary cardiomyopathy characterized by massive hypertrophy, conduction system abnormalities, and malignant ventricular arrhythmias. We introduced an mutation (denoted L2) causing human cardiomyopathy, into mouse gene, to elucidate its consequences on cardiomyocyte biology. This mutation results in deletion of 41 amino acids, compatible with presence of some defective LAMP2 protein.
View Article and Find Full Text PDFCatecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, stressed-provoked ventricular arrhythmia. CPVT is treated by β-adrenergic receptor blockers, Na channel inhibitors, sympathetic denervation, or by implanting a defibrillator. We showed recently that blockers of SK4 Ca-activated K channels depolarize the maximal diastolic potential, reduce the heart rate, and attenuate ventricular arrhythmias in CPVT.
View Article and Find Full Text PDFBackground: The recessive form of catecholaminergic polymorphic ventricular tachycardia 2 (CPVT2) is caused by mutations in cardiac calsequestrin (CASQ2), leading to protein deficiency.
Objectives: The aims of this study were to develop a viral-delivered gene therapy for CPVT2 and to determine the relationship between CASQ2 expression and antiarrhythmic efficacy in a murine model.
Methods: We used a murine model of CPVT2 caused by the D307H human mutation (CASQ2) or CASQ2 knockout (CASQ2).
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium-activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2-D307H) and in SAN cells from WT and CASQ2-D307H knock-in (KI) mice.
View Article and Find Full Text PDF