Singlet exciton fission has the potential to increase the efficiency of crystalline silicon solar cells beyond the conventional single junction limit. Perhaps the largest obstacle to achieving this enhancement is uncertainty about energy coupling mechanisms at the interfaces between silicon and exciton fission materials such as tetracene. Here, the previously reported silicon-hafnium oxynitride-tetracene structure is studied and a combination of magnetic-field-dependent silicon photoluminescence measurements and density functional theory calculations is used to probe the influence of the interlayer composition on the triplet transfer process across the hafnium oxynitride interlayer.
View Article and Find Full Text PDFThe discovery of ferroelectricity in hafnia-based materials has revitalized interest in realizing ferroelectric field-effect transistors (FeFETs) due to its compatibility with modern microelectronics. Furthermore, low-temperature processing by atomic layer deposition offers promise for realizing monolithic three-dimensional (M3D) integration toward energy- and area-efficient computing paradigms. However, integrating ferroelectrics with channel materials in FeFETs for M3D integration remains challenging due to the dual requirement of a high-quality ferroelectric-channel interface and low-power operation, all while maintaining back-end-of-line (BEOL)-compatible fabrication temperatures.
View Article and Find Full Text PDF