The recent advances in super-resolution fluorescence microscopy, including single-molecule localization microscopy (SMLM), has enabled the study of previously inaccessible details, such as the organization of proteins within cellular compartments and even nanostructures in nonbiological nanomaterials, such as the polymers and semiconductors. With such developments, the need for the development of various computational nanostructure analysis methods for SMLM images is also increasing; however, this has been limited to protein cluster analysis. In this study, we developed an edge structure analysis method for pointillistic SMLM images based on the line edge roughness and power spectral density analyses.
View Article and Find Full Text PDFSmall Methods
November 2024
Spectroscopic single-molecule localization microscopy (SMLM) has revolutionized the visualization and analysis of molecular structures and dynamics at the nanoscale level. The technique of combining high spatial resolution of SMLM with spectral information, enables multicolor super-resolution imaging and provides insights into the local chemical environment of individual molecules. However, spectroscopic SMLM faces significant challenges, including limited spectral resolution and compromised localization precision because of signal splitting and the difficulties in analyzing complex, multidimensional datasets, that limit its application in studying intricate biological systems and materials.
View Article and Find Full Text PDFBackground: Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S.
View Article and Find Full Text PDFThe analysis of membrane vesicles at the nanoscale level is crucial for advancing the understanding of intercellular communication and its implications for health and disease. Despite their significance, the nanoscale analysis of vesicles at the single particle level faces challenges owing to their small size and the complexity of biological fluids. This new vesicle analysis tool leverages the single-molecule sensitivity of super-resolution microscopy (SRM) and the high-throughput analysis capability of deep-learning algorithms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2024
Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy by exceeding the diffraction limit and revealing previously unattainable nanoscale details of cellular structures and molecular dynamics. This super-resolution imaging capability relies on fluorophore photoswitching, which is crucial for optimizing the imaging conditions and accurately determining the fluorophore positions. To understand the general on and off photoswitching mechanisms of single dye molecules, various photoswitching reagents were evaluated.
View Article and Find Full Text PDFThe skin microbiome is thought to play a critical role in maintaining skin health and protecting against infection. While most microorganisms that live on the skin are harmless or even beneficial, some can cause skin infections or other health problems, emphasizing the importance of diagnosis of the composition and diversity of the skin flora. However, conventional diagnostic methods for evaluation of the skin microbiome are not sensitive enough to detect bacteria at low concentrations and suffer from poor specificity, thus limiting early diagnosis of bacterial infections.
View Article and Find Full Text PDFIn biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns.
View Article and Find Full Text PDFComput Struct Biotechnol J
January 2023
With the development of super-resolution imaging techniques, it is crucial to understand protein structure at the nanoscale in terms of clustering and organization in a cell. However, cluster analysis from single-molecule localization microscopy (SMLM) images remains challenging because the classical computational cluster analysis methods developed for conventional microscopy images do not apply to pointillism SMLM data, necessitating the development of distinct methods for cluster analysis from SMLM images. In this review, we discuss the development of computational cluster analysis methods for SMLM images by categorizing them into classical and machine-learning-based methods.
View Article and Find Full Text PDFThe increase in the number and complexity of process levels in semiconductor production has driven the need for the development of new measurement methods that can evaluate semiconductor devices at the critical dimensions of fine patterns and simultaneously inspect nanoscale contaminants or defects. However, conventional optical inspection methods often fail to resolve device patterns or defects at the level of tens of nanometers required for device development owing to their diffraction-limited resolutions. In this study, we used the stochastic optical reconstruction microscopy (STORM) technique to image semiconductor nanostructures with feature sizes as small as 30 nm and detect individual 20 nm-diameter contaminants.
View Article and Find Full Text PDFBackground: Recently, bacterial extracellular vesicles (EVs) have been considered to play crucial roles in various biological processes and have great potential for developing cancer therapeutics and biomedicine. However, studies on bacterial EVs have mainly focused on outer membrane vesicles released from gram-negative bacteria since the outermost peptidoglycan layer in gram-positive bacteria is thought to preclude the release of EVs as a physical barrier.
Results: Here, we examined the ultrastructural organization of the EV produced by gram-positive bacteria using super-resolution stochastic optical reconstruction microscopy (STORM) at the nanoscale, which has not been resolved using conventional microscopy.
ACS Appl Mater Interfaces
October 2022
With the rapid development of the nanofabrication of polymer materials, the local measurement of the chemical properties of polymer nanostructures has become crucial because they can be highly heterogeneous at the nanoscale. We developed a spectroscopic imaging approach to characterize the nanoscale local polarity of polymer films via spectrally resolved super-resolution microscopy. We demonstrate the capability of the recently developed single-molecule sensing and imaging method to probe the polarity of polymers either inside a polymer matrix or on the external surface of a polymer.
View Article and Find Full Text PDFInt J Mol Sci
June 2022
Recent developments in super-resolution fluorescence microscopic techniques (SRM) have allowed for nanoscale imaging that greatly facilitates our understanding of nanostructures. However, the performance of single-molecule localization microscopy (SMLM) is significantly restricted by the image analysis method, as the final super-resolution image is reconstructed from identified localizations through computational analysis. With recent advancements in deep learning, many researchers have employed deep learning-based algorithms to analyze SMLM image data.
View Article and Find Full Text PDFThe recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques.
View Article and Find Full Text PDFDeveloping methods to improve the regenerative capacity of somatic stem cells (SSCs) is a major challenge in regenerative medicine. Here, we propose the forced expression of LIN28A as a method to modulate cellular metabolism, which in turn enhances self-renewal, differentiation capacities, and engraftment after transplantation of various human SSCs. Mechanistically, in undifferentiated/proliferating SSCs, LIN28A induced metabolic reprogramming from oxidative phosphorylation (OxPhos) to glycolysis by activating PDK1-mediated glycolysis-TCA/OxPhos uncoupling.
View Article and Find Full Text PDFA steady supply of platelets maintains their levels in the blood, and this is achieved by the generation of progeny from platelet intermediates. Using systematic super-resolution microscopy, we examine the ultrastructural organization of various organelles in different platelet intermediates to understand the mechanism of organelle redistribution and sorting in platelet intermediate maturation as the early step of platelet progeny production. We observe the dynamic interconversion between the intermediates and find that microtubules are responsible for controlling the overall shape of platelet intermediates.
View Article and Find Full Text PDFUnderstanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS).
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
Lanthanide-activated alkaline earth aluminate phosphors are excellent luminescent materials that are designed to overcome the limitations of conventional sulfide-based phosphors. The increasing research attention on these phosphors over the past decade has led to a drastic improvement in their phosphorescence efficiencies and resulted in a wide variety of phosphorescence colors, which can facilitate applications in various areas. This review article discusses the development of lanthanide-activated alkaline earth aluminate phosphors with a focus on the various synthesis methods, persistent luminescence mechanisms, activator and coactivator effects, and the effects of compositions.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2020
Actin networks and actin-binding proteins (ABPs) are most abundant in the cytoskeleton of neurons. The function of ABPs in neurons is nucleation of actin polymerization, polymerization or depolymerization regulation, bundling of actin through crosslinking or stabilization, cargo movement along actin filaments, and anchoring of actin to other cellular components. In axons, ABP-actin interaction forms a dynamic, deep actin network, which regulates axon extension, guidance, axon branches, and synaptic structures.
View Article and Find Full Text PDFIn this article, we demonstrate fluorescent signal amplification via cyclic staining of target molecules (FRACTAL), a technique that can amplify the signal intensity of immunofluorescence staining more than nine-fold via simple cyclic staining of secondary antibodies. We also show that FRACTAL is compatible with four-color imaging and expansion microscopy imaging.
View Article and Find Full Text PDFRare-earth-doped oxide-based phosphors have attracted great interest as light-emitting materials for technical applications and fundamental research because of their high brightness, tunable emission wavelength, and low toxicity, as well as chemical and thermal stability. The recent development of rare-earth-doped nanostructured materials showed improved phosphorescence characteristics, including afterglow and lifetime. However, the development of highly efficient phosphors remains challenging in terms of brightness and long persistence.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
To meet their purine demand, cells activate the de novo purine biosynthetic pathway and transiently cluster the pathway enzymes into metabolons called purinosomes. Recently, we have shown that purinosomes were spatially colocalized with mitochondria and microtubules, yet it remained unclear as to what drives these associations and whether a relationship between them exist. Here, we employed superresolution imaging methods to describe purinosome transit in the context of subcellular localization.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM), such as stochastic optical reconstruction microscopy and (fluorescence) photoactivated localization microscopy, has enabled superresolution microscopy beyond the diffraction limit. However, the temporal resolution of SMLM is limited by the time needed to acquire sufficient sparse single-molecule activation events to successfully construct a superresolution image. Here, a novel fast SMLM technique is developed to achieve superresolution imaging within a much shortened duration.
View Article and Find Full Text PDFWe obtained the electronic spectra of various methylated xanthine compounds including caffeine in a supersonic jet by resonant two-photon ionization spectroscopy. The methyl group in the tested methylated xanthine compounds has a distinct, site-dependent effect on the electronic spectrum. Methylation at the N3 position causes a significant red shift of the ππ* state, whereas methylation at the N1 position has only minimal effects on the electronic spectrum.
View Article and Find Full Text PDFBy recording both the images and emission spectra of thousands of single fluorescent molecules stochastically generated from the ring-opening reaction of a spiropyran, we provide mechanistic insights into its multipath reaction pathways. Through statistics of the measured single-molecule spectra, we identify two spectrally distinct isomers, presumably TTC and TTT cis-trans isomers, for the open-ring merocyanine product, and discover a strong solvent polarity-dependence for the relative population of the two isomers. From single-molecule spectral time traces, we further examine isomerization between the two product merocyanine isomers, as well as their ring-closure reaction back to the spiropyran form.
View Article and Find Full Text PDF