Reducing methane (CH) emissions from agriculture, among other sectors, is a key step to reducing global warming. There are many strategies to reduce CH emissions in ruminant animals, including genetic selection, which yields cumulative and permanent genetic gains over generations. A single-step genomic evaluation for methane efficiency (MEF) was officially implemented in April 2023 for the Canadian Holstein breed, aiming to reduce CH emissions without affecting production levels.
View Article and Find Full Text PDFCoat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re).
View Article and Find Full Text PDFGenomic evaluations for 161,341 Holsteins were computed by using 311,725 of 777,962 markers on the Illumina BovineHD Genotyping BeadChip (HD). Initial edits with 1,741 HD genotypes from 5 breeds revealed that 636,967 markers were usable but that half were redundant. Holstein genotypes were from 1,510 animals with HD markers, 82,358 animals with 45,187 (50K) markers, 1,797 animals with 8,031 (8K) markers, 20,177 animals with 6,836 (6K) markers, 52,270 animals with 2,683 (3K) markers, and 3,229 nongenotyped dams (0K) with >90% of haplotypes imputable because they had 4 or more genotyped progeny.
View Article and Find Full Text PDFThe objective of this study was to investigate genetic merit of return over feed (ROF), which is a herd profit index defined by CanWest Dairy Herd Improvement as a difference between milk income and feed cost. A multiple-trait (MT) model and random regression model (RRM) were used. The traits analyzed in MT were rearing cost and ROF of the first three lactations.
View Article and Find Full Text PDFThe aim of this study was to use survival analysis to assess the relationship between reproduction traits and functional longevity of Canadian dairy cattle. Data consisted of 1,702,857; 67,470; and 33,190 Holstein, Ayrshire, and Jersey cows, respectively. Functional longevity was defined as the number of days from first calving to culling, death, or censoring; adjusted for the effect of milk yield.
View Article and Find Full Text PDFThe national genetic evaluation of herd life for Canadian dairy breeds was modified from a 3-trait to a 5-trait animal model. The genetic evaluation incorporates information from daughter survival (direct herd life) and information from conformation, fertility, and udder health traits that are related to longevity (indirect herd life). Genetic evaluations for direct herd life were based on cows' survival from first calving to 120 days in milk (DIM), from 120 to 240 DIM, from 240 DIM to second calving, survival to third calving, and survival to fourth calving, which were analyzed using a multiple-trait animal model.
View Article and Find Full Text PDFThe aim of this study was to assess the level of somatic cell count (SCC) and to explore the impact of somatic cell score (SCS) on the functional longevity of Canadian dairy cattle by using a Weibull proportional hazards model. Data consisted of 1,911,428 cows from 15,970 herds sired by 7,826 sires for Holsteins, 80,977 cows in 2,036 herds from 1,153 sires for Ayrshires, and 53,114 cows in 1,372 herds from 1,758 sires for Jerseys. Functional longevity was defined as the number of days from the first calving to culling, death, or censoring.
View Article and Find Full Text PDFThe aim of this study was to assess the level of inbreeding and its relationship to the functional survival of Canadian dairy breeds by using a Weibull proportional hazard model. Data consisted of records from 72,385 cows in 1,505 herds from 2,499 sires for Jerseys, 112,723 cows in 1,482 herds from 2,926 sires for Ayrshires, and 1,977,311 cows in 17,182 herds from 8,261 sires for Holsteins. Longevity was defined as the number of days from first calving to culling, death, or censoring.
View Article and Find Full Text PDFThe aim of this study was to use a Weibull proportional hazards model to explore the impact of type traits on the functional survival of Canadian Jersey and Ayrshire cows. The data set consisted of 49,791 registered Jersey cows from 900 herds calving from 1985 to 2003. The corresponding figures for Ayrshire were 77,109 cows and 921 herds.
View Article and Find Full Text PDFFifteen countries, based on geographical representation, Interbull membership, and size of progeny testing programs, provided a brief description of national selection index and top bull listings from August 2003. Individual traits included in each selection index were grouped into 3 components as they related to production, durability, and health and reproduction. The relative emphasis for each component within the selection index, as well as the number of common bulls among top listings were compared across countries.
View Article and Find Full Text PDFThe objectives of this study were to identify the most important factors that influence functional survival and to estimate the genetic parameters of functional survival for Canadian dairy cattle. Data were obtained from lactation records extracted for the May 2002 genetic evaluation of Holstein, Jersey, and Ayrshire breeds that calved between July 1, 1985 and April 5, 2002. Analysis was performed using a Weibull proportional hazard model, and the baseline hazard function was defined on a lactation basis instead of the traditional analysis of the whole length of life.
View Article and Find Full Text PDFThe aim of this study was to explore the impact of type traits on the functional survival of Canadian Holstein cows using a Weibull proportional hazards model. The data set consisted of 1,130,616 registered cows from 13,606 herds calving from 1985 to 2003. Functional survival was defined as the number of days from first calving to culling, death, or censoring.
View Article and Find Full Text PDFThe Canadian Test-Day Model is a 12-trait random regression animal model in which traits are milk, fat, and protein test-day yields, and somatic cell scores on test days within each of first three lactations. Test-day records from later lactations are not used. Random regressions (genetic and permanent environmental) were based on Wilmink's three parameter function that includes an intercept, regression on days in milk, and regression on an exponential function to the power -0.
View Article and Find Full Text PDFSire and error variance components and heritabilities were estimated for 26 conformation traits using linear type classifications of 175,693 daughters of 6681 Holstein sires in 21,869 herd-round-classifier subclasses. Estimates from first classifications during first lactations were contrasted with estimates from the same 175,693 females' most recent classification, which included reclassifications. Only cows that have their final classification raised a full category receive an official reclassification record; thus, heritability estimates from data that include these reclassification records may be biased.
View Article and Find Full Text PDFHazard functions were plotted and troughs were used to define stayability traits that best coincided with the time of culling decisions. Traits evaluated were stayability to 17, 30, 43, and 55 mo of productive life and stayability to 42, 54, 66, and 78 mo of total life. Holstein data from Record of Performance and supervised Dairy Herd Improvement and Dairy Herd Analysis Service testing programs formed two data sets with 243,348 and 118,362 daughters of 10,723 and 4,583 sires, respectively, and were used to estimate stayability heritabilities and correlations.
View Article and Find Full Text PDF