Here, we propose an effective method for improving the resistive switching characteristics of solution-processed gallium-doped zinc oxide (GaZnO(x)) resistive random access memory (RRAM) devices using hydrogen peroxide. Our results imply that solution processed GaZnO(x) RRAM devices could be one of the candidates for the development of low cost RRAM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2014
We studied the effects of high-pressure annealing (HPA) on InGaZnO (IGZO) thin-film transistors (TFTs). HPA was proceeded after TFT fabrication as a post process to improve electrical performance and stability. We used N2 as the pressurized gas.
View Article and Find Full Text PDFWe developed a method to improve the electrical performance and stability of passivated amorphous In-Ga-Zn-O thin-film transistors by simultaneous ultraviolet and thermal (SUT) treatment. SUT treatment was carried out on fully fabricated thin-film transistors, including deposited source/drain and passivation layers. Ultraviolet (UV) irradiation disassociated weak and diatomic chemical bonds and generated defects, and simultaneous thermal annealing rearranged the defects.
View Article and Find Full Text PDFLow-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C.
View Article and Find Full Text PDFWe investigated the effects of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot (CQD) solids. We applied high pressure to PbS CQD solids using nitrogen gas to reduce the inter-dot distance. Using this simple process, we obtained conductive PbS CQD solids.
View Article and Find Full Text PDFA high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone.
View Article and Find Full Text PDFWe propose solution-processed In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) with multistacked active layers for detecting artificial deoxyribonucleic acid (DNA). Enhanced sensing ability and stable electrical performance of TFTs were achieved through use of multistacked active layers. Our IGZO TFT had a turn-on voltage (V(on)) of -0.
View Article and Find Full Text PDFIn this study, solution-processed nickel oxide (NiO) thin film was investigated as a hole transport layer on anode to improve the performance of bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). We fabricated NiO thin film without any vacuum-related process. Characterization of the NiO film under this study shows that it has maximum transmittance of 93.
View Article and Find Full Text PDF