Publications by authors named "Doo Hwan Jung"

High-density carbon blocks have excellent mechanical, thermal, and electrical properties. In particular, these blocks are applied in various fields while maintaining excellent physical properties even in harsh environments. In this study, binderless coke manufactured under certain conditions was used to form green bodies (GBs) under various pressure conditions of 50 to 250 MPa, and the bodies were carbonized to form a high-density carbon block (CB).

View Article and Find Full Text PDF

An inexpensive and general-purpose carbon fiber was prepared using coal tar pitch. In contrast to the solvent extraction process employing expensive solvents, a low-cost centrifugal separation method facilitated the reduction of loss due to the pitch purification and an overall yield increase. The coal tar pitch purified by centrifugation and subsequently co-carbonized with pyrolysis fuel oil improved in spinnability.

View Article and Find Full Text PDF

High-density carbon blocks are much lighter than metals and have excellent mechanical properties and are one of the materials garnering attention to replace existing metal parts. In this study, a binderless coke was produced by changing the flow rates of nitrogen and air as a carrier gas during heat treatment of coal tar pitch and using this, a green body was formed at 150 MPa and carbonized to produce a high-density carbon block. We express the binderless coke produced in this way by N10A0, N7A3, N5A5, N3A7, N0A10 according to the ratio of nitrogen and air, and in the case of carbon block, we have added CB in front of it.

View Article and Find Full Text PDF

In this study, surface oxidation of petroleum pitch was performed to enhance the thermal stability, specific surface area, and mesopore ratio of activated carbon. The oxygen uptake of the pitch by surface oxidation has a strong influence on the formation of the specific surface area and pore size of activated carbon. It was confirmed that the oxygen uptake from the surface to the inner side of the surface oxidized pitch was the highest at the temperature of 330 °C (IP330-AC), with a mesopore ratio of 63.

View Article and Find Full Text PDF

The carbonization and graphitization of carbon/carbon (C/C) composites prepared from mesocarbon microbeads (MCMB) and chopped carbon fiber (CCF) have been studied with a wide range of temperatures, CCF contents and MCMB sizes. Three different sizes of MCMB were prepared with coal tar pitch at three temperatures, 420, 430 and 440 °C, and identified as about 12.8, 16.

View Article and Find Full Text PDF

High-strength and high-density carbonized carbon blocks from self-sintering coke were manufactured using coal tar and two-stage heat treatments (1 and 2 stage treatments). First, the molecular weight distribution of the refined coal tar was controlled through a pressured heat treatment (1 stage treatment). Second, the 1 stage heat-treated coal tar (1S-CT) was treated using a delayed coking system (2 stage treatment) to become the self-sintering coke.

View Article and Find Full Text PDF

In this study, a high density carbon block without binder was manufactured by mesocarbon microbeads (MCMB) from coal tar pitch. To develop the high density carbon block without a binder, MCMBs were oxidized at different levels of temperature. To verify the effect of oxygen content in the carbonized carbon block (CCB), an elementary analysis (EA) and X-ray photoelectron spectroscopy (XPS) were performed.

View Article and Find Full Text PDF

Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF.

View Article and Find Full Text PDF

A critical issue for maintaining long-term applications of polymer electrolyte fuel cells (PEFCs) is the development of an innovative technique for the functionalization of a carbon support that preserves their exceptional electrical conductivity and robustly enriches their durability. Here, we report for the first time how the formation of a partially coated, ultrathin, hydrophobic silica layer around the surfaces of the carbon nanofiber (CNF) helps improve the durability of the CNF without decreasing the significant electrical conductivity of the virgin CNF. The synthesis involved the adsorption of polycarbomethylsilane (PS) on the CNF's sidewalls, followed by high temperature pyrolysis of PS, resulting in a highly durable, conductive carbon support in PEFCs.

View Article and Find Full Text PDF

Highly dispersed Pd nanoparticles were prepared by borohydride reduction of Pd(acac)(2) in 1,2-propanediol at an elevated temperature. They were uniformly dispersed on carbon black without significant aggregation. X-ray diffraction showed that carbons from the Pd precursor dissolved in Pd, increasing its lattice parameter.

View Article and Find Full Text PDF

The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters.

View Article and Find Full Text PDF

Carbon nanofibers containing a range of nitrogen contents of 1-10 atom % were directly synthesized by catalytic chemical vapor deposition over nickel-based catalysts at 350-600 degrees C using acetonitrile and acrylonitrile. The nitrogen content was controlled by careful choice of the reaction conditions. The N-doped carbon nanofibers showed herringbone structure with 20-60 nm diameter.

View Article and Find Full Text PDF