Attosecond chronoscopy enables the exploration of correlated electron dynamics in real time. One key observable of attosecond physics is the determination of "time zero" of photoionization, the time delay with which the wave packet of the ionized electron departs from the ionic core. This observable has become accessible by experimental advances in attosecond streaking and reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) techniques.
View Article and Find Full Text PDFOne key issue of the foundation of statistical mechanics is the emergence of equilibrium ensembles in isolated and closed quantum systems. Recently, it was predicted that in the thermodynamic (N→∞) limit of large quantum many-body systems, canonical density matrices emerge for small subsystems from almost all pure states. This notion of canonical typicality is assumed to originate from the entanglement between subsystem and environment and the resulting intrinsic quantum complexity of the many-body state.
View Article and Find Full Text PDFLight-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond.
View Article and Find Full Text PDFInteraction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol.
View Article and Find Full Text PDFWe propose an attosecond extreme ultraviolet pump IR-probe photoionization protocol that employs pairs of counterrotating consecutive harmonics and angularly resolved photoelectron detection, thereby providing a direct measurement of ionization phases. The present method, which we call circular holographic ionization-phase meter, gives also access to the phase of photoemission amplitudes of even-parity continuum states from a single time-delay measurement since the relative phase of one- and two-photon ionization pathways is imprinted in the photoemission anisotropy. The method is illustrated with ab initio simulations of photoionization via autoionizing resonances in helium.
View Article and Find Full Text PDFThe reconstruction of the full temporal dipole response of a strongly driven time-dependent system from a single absorption spectrum is demonstrated, only requiring that a sufficiently short pulse is employed to initialize the coherent excitation of the system. We apply this finding to the time-domain observation of Rabi cycling between doubly excited atomic states in the few-femtosecond regime. This allows us to pinpoint the breakdown of few-level quantum dynamics at the critical laser intensity near 2 TW/cm^{2} in doubly excited helium.
View Article and Find Full Text PDFAlthough the time-dependent buildup of asymmetric Fano line shapes in absorption spectra has been of great theoretical interest in the past decade, experimental verification of the predictions has been elusive. Here, we report the experimental observation of the emergence of a Fano resonance in the prototype system of helium by interrupting the autoionization process of a correlated two-electron excited state with a strong laser field. The tunable temporal gate between excitation and termination of the resonance allows us to follow the formation of a Fano line shape in time.
View Article and Find Full Text PDF