Many organs contain adult stem cells (ASCs) to replace cells due to damage, disease, or normal tissue turnover. ASCs can divide asymmetrically, giving rise to a new copy of themselves (self-renewal) and a sister that commits to a specific cell type (differentiation). Decades of research have led to the identification of pleiotropic genes whose loss or gain of function affect diverse aspects of normal ASC biology.
View Article and Find Full Text PDFSix monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis.
View Article and Find Full Text PDF