Publications by authors named "Donne S"

The point of zero charge (PZC) is a crucial parameter for investigating the charge storage mechanisms in energy storage systems at the molecular level. This paper presents findings from three different electrochemical techniques, compared for the first time: cyclic voltammetry (CV), staircase potentio electrochemical impedance spectroscopy (SPEIS), and step potential electrochemical spectroscopy (SPECS), for two activated carbons (ACs) with 0.1 mol L aqueous solution of LiNO, LiSO, and KI.

View Article and Find Full Text PDF

Biochars have been highlighted as a means of carbon sequestration, which is significant for achieving carbon neutrality. Mixtures of wood chips and either bentonite or kaolin were co-pyrolysed at temperatures of 350 °C and 550 °C, and the microstructural characteristics and the carbon sequestration potential of the resultant biochar were explored in the study. The addition of minerals promoted the formation of a stable carbon structure in biochar, especially the proportion of SiC bonds in the high-temperature mineral-composited biochar increased by 3.

View Article and Find Full Text PDF

Halloysite nanotubes (HNT) and ball-milled biochar (BC) incorporated biocompatible mesoporous adsorbents (HNT-BC@Alg) were synthesized for adsorption of aqueous heavy-metal ions. HNT-BC@Alg outperformed the BC, HNT, and BC@Alg in removing cadmium (Cd), copper (Cu), nickel (Ni), and lead (Pb). Mesoporous structure (∼7.

View Article and Find Full Text PDF

Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag-enriched AgO/Ag/SnO) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C.

View Article and Find Full Text PDF

Electrochemical ammonia synthesis that utilizes renewable electricity in the nitrogen reduction reaction (NRR) has recently been remarkably considered. Of particular importance is to develop efficient electrocatalysts at low costs. Herein, highly selective nitrogen capture using porous aluminum-based metal-organic frameworks (MOFs) materials, MIL-100 (Al), is first designed for the electrochemical nitrogen fixation in alkaline media under ambient conditions.

View Article and Find Full Text PDF

Defects at discontinuities of the perovskite lattice limit the performance of the perovskite solar cell (PSC). Lead iodide (PbI) and pyridine have been shown to passivate these defects. We treat methylammonium lead iodide (MAPbI) films with pyridine solutions to investigate the effects of the two passivators.

View Article and Find Full Text PDF

Achieving more meaningful N conversion by reducing the energy input and carbon footprint is now being investigated through a method of N fixation instead of the Haber-Bosch process. Unfortunately, the electrochemical N reduction reaction (NRR) method as a rising approach currently still shows low selectivity (Faradaic efficiency < 10%) and high-energy consumption [applied potential at least - 0.2 V versus the reversible hydrogen electrode (RHE)].

View Article and Find Full Text PDF

Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone.

View Article and Find Full Text PDF

Carbons have been synthesized through the reduction of molten carbonate systems under varied conditions. The mechanism and kinetics of carbon electrodeposition has been investigated. Carbon morphologies include amorphous, graphite-like, and spherical aggregate phases.

View Article and Find Full Text PDF

Red mud is a hazardous waste material produced during alkaline leaching of bauxite in the Bayer process. This study proposed the use of red mud to replace fly ash in self-compacting concrete (SCC) and the influences of red mud on fresh and hardened properties, and durability performances of SCC were studied. The fresh concrete results show that red mud had a slight negative impact on the fresh properties of SCC.

View Article and Find Full Text PDF

Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting.

View Article and Find Full Text PDF

Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images.

View Article and Find Full Text PDF

In this study, the thermal stability of a wood shaving biochar (WS, 650°C), a chicken litter biochar (CL, 550°C) and an activated carbon (AC, 1100°C) were evaluated by combustion at 375°C for 24h to remove the labile non-carbonized organic matter. Results showed that WS and CL biochars were not thermally stable and can lose most of the organic C during combustion. The combusted WS and CL biochars retained considerable amounts of negative charge and displayed higher sorption for Cd (from 5.

View Article and Find Full Text PDF

Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung.

View Article and Find Full Text PDF

Biochar and mineral-enriched biochar (MEB) have been used as soil amendments to improve soil fertility, sequester carbon and mitigate greenhouse gas emissions. Such beneficial outcomes could be partially mediated by soil bacteria, however little is known about how they directly interact with biochar or MEB. We therefore analyzed the diversity and functions of bacterial communities on the surfaces of one biochar and two different MEBs after a 140-day incubation in soil.

View Article and Find Full Text PDF

The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves-typically in the form of chessboard corners-need to be found.

View Article and Find Full Text PDF

Elevated histamine (HTM) levels are closely linked to food poisoning as well as to pathophysiological allergic diseases. In this study, HTM-imprinted, solution-processable microspheres were prepared via high-dilution conventional thermal polymerization (CTP) and controlled radical polymerization (CRP) using ethylene glycol dimethacrylate (80 or 90 wt %) and methacrylic acid at 60 °C in acetonitrile and evaluated as recognition materials for sensing applications. The polymers were selective to HTM in binding studies, cross-rebinding, and competitive binding assays against the HTM analogues histidine, imidazole, and tryptamine.

View Article and Find Full Text PDF

Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species.

View Article and Find Full Text PDF

Agricultural soils are the primary anthropogenic source of atmospheric nitrous oxide (N2O), contributing to global warming and depletion of stratospheric ozone. Biochar addition has shown potential to lower soil N2O emission, with the mechanisms remaining unclear. We incubated eucalypt biochar (550 °C)--0, 1 and 5% (w/w) in Ferralsol at 3 water regimes (12, 39 and 54% WFPS)--in a soil column, following gamma irradiation.

View Article and Find Full Text PDF

Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar.

View Article and Find Full Text PDF

The mode of synaptic transmission in the vestibular periphery, between type I hair cells and their associated calyx terminal, has been the subject of much debate. The close and extensive apposition of pre- and post-synaptic elements has led some to suggest potassium (K(+)) accumulates in the intercellular space and even plays a role in synaptic transmission. During patch clamp recordings from isolated and embedded hair cells in a semi-intact preparation of the mouse cristae, we noted marked differences in whole-cell currents.

View Article and Find Full Text PDF

There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of "spermostasis," characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide.

View Article and Find Full Text PDF

In this work a titration technique has been used to characterize the amphoteric surface properties of a series of chemically reduced electrolytic manganese dioxide (EMD) samples (MnO 1.97 to MnO 1.50).

View Article and Find Full Text PDF

In this work a titration technique was used to determine the amphoteric surface properties of a series of heat-treated electrolytic manganese dioxide (EMD) samples (up to 500 degrees C). The surface of each sample was found to consist of independent acidic and basic hydroxyl sites, which could be characterized by their respective equilibrium constants and site concentrations. It was found that the acidic sites could not be characterized by a single equilibrium constant, but rather by a distribution indicating the subtle differences between individual sites, while a single equilibrium constant adequately represented the basic sites.

View Article and Find Full Text PDF