Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr(-/-)) mice.
View Article and Find Full Text PDFThe potency of second generation antisense oligonucleotides (ASOs) in animals was increased 3- to 5 -fold (ED(50) approximately 2-5 mg/kg) without producing hepatotoxicity, by reducing ASO length (20-mer to 14-mer) and by employing novel nucleoside modifications that combine structural elements of 2'-O-methoxyethyl residues and locked nucleic acid. The ability to achieve this level of potency without any formulation agents is remarkable and likely to have a significant impact on the future design of ASOs as therapeutic agents.
View Article and Find Full Text PDFWe investigated the use of an antisense oligonucleotide (ASO) specific for mRNA of the alpha chain (CD49d) of mouse VLA-4 to down-regulate VLA-4 expression and alter central nervous system (CNS) inflammation. ISIS 17044 potently and specifically reduced CD49d mRNA and protein in cell lines and in ex-vivo-treated primary mouse T cells. When administered prophylactically or therapeutically, ISIS 17044 reduced the incidence and severity of paralytic symptoms in a model of experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFAntisense Nucleic Acid Drug Dev
April 2004
Inclusion of C-5 propynyl pyrimidines in phosphorothioate antisense oligonucleotides (ASOs) has been shown to significantly increase their potency for inhibiting gene expression in vitro. This increased potency is believed to be the result of enhanced binding affinity to target RNA. Our results show that C-5 propynyl pyrimidine-modified oligonucleotides caused an increase in the melting temperature (T(m)) of both oligodeoxynucleotides (ODNs) and 2'-O-(2-methoxy)ethyl (2'-MOE)-modified oligonucleotides.
View Article and Find Full Text PDFTumor necrosis factor-alpha (TNF-alpha) is a key cytokine involved in the pathogenesis of inflammatory bowel disease. We have developed a second-generation antisense oligonucleotide (ISIS 25302) specific for murine TNF-alpha and have evaluated this oligonucleotide in two models of gut inflammation of distinct etiology. ISIS 25302 decreased TNF-alpha mRNA in a dose- and sequence-dependent manner in vitro in the mouse macrophage cell line P388D1.
View Article and Find Full Text PDFSignaling through the phosphatidylinositol 3'-kinase (PI3K) pathway is crucial for metabolic responses to insulin, and defects in PI3K signaling have been demonstrated in type 2 diabetes. PTEN (MMAC1) is a lipid/protein phosphatase that can negatively regulate the PI3K pathway by dephosphorylating phosphatidylinositol (3,4,5)-triphosphate, but it is unclear whether PTEN is physiologically relevant to insulin signaling in vivo. We employed an antisense oligonucleotide (ASO) strategy in an effort to specifically inhibit the expression of PTEN.
View Article and Find Full Text PDF