Publications by authors named "Donna Stone"

Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another's binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen's unusually rapid dissociation from its ligand.

View Article and Find Full Text PDF

Recent evidence suggests that Notch signaling may play a role in regulation of cancer stem cell (CSC) self-renewal and differentiation hence presenting a promising target for development of novel therapies for aggressive cancers such as triple negative breast cancer (TNBC). We generated Notch1 monoclonal antibodies (mAbs) that specifically bind to the negative regulatory region of human Notch1. Notch1 inhibition in TNBC Sum149 and patient derived xenograft (PDX) 144580 models led to significant TGI particularly in combination with docetaxel.

View Article and Find Full Text PDF

Label-free biosensors are often used in the discovery of therapeutic antibodies to characterize the epitope binding regions of a panel of monoclonal antibodies that target a specific antigen, thus facilitating their organization into epitope groups or "bins". When tested in a pairwise combinatorial manner, two antibodies that compete with one another for binding to a specific antigen may be grouped into the same epitope bin - that is, they recognize similar or overlapping epitopes - whereas two antibodies that bind simultaneously to the antigen are placed into different epitope bins. However, depending on the assay format used, results from such experiments can sometimes contradict one another.

View Article and Find Full Text PDF

Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (K(D) values) spanning six orders of magnitude, from approximately 100 fM to 100 nM.

View Article and Find Full Text PDF

PF-04840082 is a humanized prototype anti-Dickkopf-1 (Dkk-1) immunoglobulin isotype G(2) (IgG(2)) antibody for the treatment of osteoporosis. In vitro, PF-04840082 binds to human, monkey, rat, and mouse Dkk-1 with high affinity. After administration of PF-04840082 to rat and monkey, free Dkk-1 concentrations decreased rapidly and returned to baseline in a dose-dependent manner.

View Article and Find Full Text PDF