Transmission electron microscopy (TEM) was used to compare the ultrastructural differences between healthy male florets (anthers) and one floret parasitized by in late phase C syconia of from southern Florida. Previous light-microscopic examination of paraffin-sectioned material showed that -infested anthers of manifested as malformed, often with aberrant pollen and hypertrophied epidermal cells closest to regions containing propagating nematodes. Female florets or fig wasp-parasitized female florets were not observed to be parasitized by nematodes.
View Article and Find Full Text PDFThe plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3.
View Article and Find Full Text PDFHuanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate.
View Article and Find Full Text PDFThe miniature1 (mn1) seed phenotype in maize (Zea mays) is due to a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase (INCW2) that localizes exclusively to the basal endosperm transfer cells (BETCs) of developing seeds. A common feature of all transfer cells is the labyrinth-like wall-in-growth (WIG) that increases the plasma membrane area, thereby enhancing transport capacity in these cells. To better understand WIG formation and roles of INCW2 in the BETC development, we examined wild-type and mn1 mutant developing kernels by cryofixation and electron microscopy.
View Article and Find Full Text PDF