Cyanobacterial blooms are a global concern prone to causing environmental and economic damages and are tightly linked to anthropogenic nutrient inputs. Likewise, microplastic pollution has also become globally ubiquitous inevitably co-occurring with blooms. However, little is known on how microplastics influence cyanobacterial physiologically and how potential physiological changes can affect their buoyancy, ultimately impacting their fate, and transport, including deposition during bloom events.
View Article and Find Full Text PDFSince their introduction to North America in the 1980s, research to develop effective control tools for invasive mussels (Dreissena polymorpha and D. rostriformis bugensis) has been ongoing across various research institutions using a range of testing methods. Inconsistencies in experimental methods and reporting present challenges for comparing data, repeating experiments, and applying results.
View Article and Find Full Text PDFEfforts to make research environments more inclusive and diverse are beneficial for the next generation of Great Lakes researchers. The global COVID-19 pandemic introduced circumstances that forced graduate programs and academic institutions to re-evaluate and promptly pivot research traditions, such as weekly seminar series, which are critical training grounds and networking opportunities for early career researchers (ECRs). While several studies have established that academics with funded grants and robust networks were better able to weather the abrupt changes in research and closures of institutions, ECRs did not.
View Article and Find Full Text PDFMicroplastics (MPs) are globally ubiquitous in sediments and surface waters. Interactions between biota and MPs are complex and influence their fate and effects in the environment. Once MPs enter aquatic systems, they are colonized by biofilms that may form from the excretion of extracellular polymeric substances (EPS) from microalgae.
View Article and Find Full Text PDFAnthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.
View Article and Find Full Text PDFThe impacts of microplastic particulates in benthic freshwater organisms have been largely unexplored despite abundant plastic accumulation in the sediments of these systems. We investigated the uptake of plastic particles by benthic filter feeding quagga mussels (Dreissena bugensis) and associated toxicity exhibited through impacts on mortality, filtration rate, reproduction and oxygen consumption. Matrix Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI-IMS) technology was used to assess the microplastic inclusion.
View Article and Find Full Text PDFQuagga mussels (Dreissena rostriformis burgensis) are a highly invasive aquatic species to North America, capable of filtering large volumes of water and causing severe ecological and economic impacts. Their range has been expanding since they first invaded the Great Lakes in the 1980s. To predict their spread, it is crucial to understand environmental parameters, which facilitate their range expansion.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2019
Quagga (Dreissena rostriformis bugensis) and zebra (D. polymorpha) mussels are broadcast spawners that produce planktonic, free swimming veligers, a life history strategy dissimilar to native North American freshwater bivalves. Dreissenid veligers require highly nutritious food to grow and survive, and thus may be susceptible to increased mortality rates during harsh environmental conditions like cyanobacteria blooms.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2019
Phosphorous is an essential nutrient for all forms of life; however, the question of toxicity to aquatic species remains largely unanswered, despite many systems that exceed natural phosphorus loads. This study determined the ecotoxicological threshold concentration of phosphorus to the freshwater bivalve Dreissena bugensis using a 96-h bioassay. Sublethal, medial lethal, and lethal levels of sodium phosphate to D.
View Article and Find Full Text PDFEnviron Toxicol Chem
February 2019
The temporal expansion of harmful algal blooms, primarily associated with cyanobacteria, may impact aquatic organisms at vulnerable life-history stages. Broadcast spawning species release gametes into the water column for external fertilization, directly exposing sperm to potential aquatic stressors. To determine if cyanobacteria can disrupt reproduction in freshwater broadcast spawners, we evaluated sublethal effects of cyanobacteria exposure on quagga mussel (Dreissena rostriformis bugensis) sperm.
View Article and Find Full Text PDFDreissenid mussels Dreissena bugensis (quagga mussel) and Dreissena polymorpha (zebra mussel) are prolific invasive species to the freshwaters of the United States and Western Europe. In the Great Lakes, D. polymorpha has initially dominated the system since its invasion in the mid-1980s; however, recently D.
View Article and Find Full Text PDFManagement of nonindigenous species includes prevention, early detection and rapid response and control. Early detection and rapid response depend on prioritizing and monitoring sites at risk for arrival or secondary spread of nonindigenous species. Such monitoring efforts require sufficient biosecurity budgets to be effective and meet management or policy directives for reduced risk of introduction.
View Article and Find Full Text PDFManagement of invasive species has increasingly emphasized the importance of early detection and rapid response (EDRR) programs in limiting introductions, establishment, and impacts. These programs require an understanding of vector and species spatial dynamics to prioritize monitoring sites and efficiently allocate resources. Yet managers often lack the empirical data necessary to make these decisions.
View Article and Find Full Text PDFContaminant exposure in aqueous systems typically involves complex chemical mixtures. Given the large number of compounds present in the environment, it is critical to identify hazardous chemical interactions rapidly. The present study utilized a prototype for a novel high-throughput assay to quantify behavioral changes over time to identify chemical interactions that affect toxicity.
View Article and Find Full Text PDFTrophic magnification factors (TMFs) provide a method of assessing chemical biomagnification in food webs and are increasingly being used by policy makers to screen emerging chemicals. Recent reviews have encouraged the use of bioaccumulation models as screening tools for assessing TMFs for emerging chemicals of concern. The present study used a food web bioaccumulation model to estimate TMFs for polychlorinated biphenyls (PCBs) in a riverine system.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are an environmental concern because of their adverse effects on humans and wildlife, and understanding the contribution of various matrices (i.e., sediment and water) to PCB exposure on aquatic communities is critical for successful remediation of impacted sites.
View Article and Find Full Text PDFMany emerging contaminants tend to be biologically active at very low concentrations, occur in water as part of complex mixtures, and impact biota in ways that are not detected using traditional toxicity tests (e.g., median lethal concentration).
View Article and Find Full Text PDFAn inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination.
View Article and Find Full Text PDFMonitoring recreational waters for fecal contamination is an important responsibility of water resource management agencies throughout the world, yet fecal indicator bacteria (FIB)-based recreational water quality assessments rarely distinguish between analytical, spatial, and temporal variability. To address this gap in water resources research and management protocol, we compare two methods for quantifying FIB concentration variability at a frequently-used beach on Lake Huron (Michigan, USA). The first method calculates differences between most probable number (MPN) and colony-forming unit (CFU) values derived from conventional analysis procedures.
View Article and Find Full Text PDFFish consumption is a potential route of human exposure to the hepatotoxic microcystins, especially in lakes and reservoirs that routinely experience significant toxic Microcystis blooms. Understanding the rates of uptake and elimination for microcystins as well as the transfer efficiency into tissues of consumers are important for determining the potential for microcystins to be transferred up the food web and for predicting potential human health impacts. The main objective of this work was to conduct laboratory experiments to investigate the kinetics of toxin accumulation in fish tissue.
View Article and Find Full Text PDFThe ability to tolerate disturbance is a defense strategy that minimizes the effects of damage to fitness and is essential for sustainability of populations, communities, and ecosystems. Despite the apparent benefits of tolerance, there may be an associated cost that results in a deficiency of a system to respond to additional disturbances. Aquatic ecosystems are often exposed to a variety of natural and anthropogenic disturbances, and the effects of these compound perturbations are not well known.
View Article and Find Full Text PDFThe effects of total organic carbon (TOC) and UV-B radiation on Zn toxicity and bioaccumulation in a Rocky Mountain stream community were assessed in a 10-d microcosm experiment. We predicted that TOC would mitigate Zn toxicity and that the combined effects of Zn and UV-B would be greater than Zn alone. However, TOC did not mitigate Zn toxicity in this study.
View Article and Find Full Text PDFEnviron Toxicol Chem
May 2004
Daphnia (Crustacea) are extensively used as model organisms in ecotoxicology; however, little is known regarding their endocrine system. This study examines Daphnia vulnerability to vertebrate hormones. Twelve natural or synthetic vertebrate hormones were screened for activity on developmental and reproductive processes in Daphnia magna.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2004
Toxaphene is a persistent environmental contaminant that has been shown to alter male production in Daphnia magna and to induce P-450 activity in mammals. Cytochrome P-450-mediated metabolism may lead to xenobiotic detoxification resulting in acclimation. To determine if D.
View Article and Find Full Text PDFToxicol Ind Health
June 2002
Daphnia magna were evaluated for use as a screen for pesticides that have been demonstrated to have estrogenic (o'p'-DDT, di-n-butyl phthalate, toxaphene), anti-androgenic (p'p-DDE, linuron), thyroid (acetochlor, alachlor, metribuzin), insulin (amitraz) or lutenizing hormone (2,4-D) activity in vertebrates, and to establish daphnid sensitivity to these compounds. Pesticides with unknown effects on vertebrate endocrine systems (chlorosulfuran, cyanazine, diflubenzuron, metolachlor, and diquat) were also evaluated. Compounds were assayed for six days at environmentally relevant concentrations ranging from 0.
View Article and Find Full Text PDF