Publications by authors named "Donna MacCallum"

Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M.

View Article and Find Full Text PDF

Animal colonization and infection models are frequently used to investigate host-pathogen interactions and disease progression. Here, we describe an effective model to investigate the ability of the newly emerged fungal pathogen Candida auris to persistently colonize the gut of immunocompetent mice. In our model, mice are inoculated by gavage and are subsequently monitored for colonization by determining daily fungal stool burdens.

View Article and Find Full Text PDF

Candida auris can persist for long periods on hospital surfaces and on the skin. C. auris has the ability to form drug-resistant biofilms, which can substantially impact on patient outcome.

View Article and Find Full Text PDF

The ability of pathogenic fungi to obtain essential nutrients from the host is vital for virulence. In Candida albicans, acquisition of the macronutrient phosphate is regulated by the Pho4 transcription factor and is important for both virulence and resistance to host-encountered stresses. All cells store phosphate in the form of polyphosphate (polyP), a ubiquitous polymer comprising tens to hundreds of phosphate residues.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibody (mAb) therapies for fungal infections are still being developed, with no available licensed options yet.
  • Researchers focused on Candida albicans cell wall glycoproteins as targets for new therapeutic antibodies, specifically Utr2 and Pga31, which are critical for fungal infection.
  • The lead mAb showed promising results in mouse models, significantly improving survival rates and reducing fungal presence in kidneys, outperforming existing treatments.
View Article and Find Full Text PDF

species are a major part of the normal mycobiota and colonize mainly sebum-rich skin regions of the body. This group of fungi cause a variety of infections such as pityriasis versicolor, folliculitis, and fungaemia. In particular, and its allergens have been associated with non-infective inflammatory diseases such as seborrheic dermatitis and atopic eczema.

View Article and Find Full Text PDF

An increasing number of outbreaks due to resistant non-albicans Candida species have been reported worldwide. Between 2014 and 2016, Candida isolates causing invasive candidiasis were recovered in a Mexican hospital. Isolates were identified to species level and antifungal susceptibility was determined.

View Article and Find Full Text PDF

Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source.

View Article and Find Full Text PDF

Candida auris is an emerging pathogenic yeast of significant clinical concern because of its frequent intrinsic resistance to fluconazole and often other antifungal drugs and the high mortality rates associated with systemic infections. Furthermore, C. auris has a propensity for persistence and transmission in health care environments.

View Article and Find Full Text PDF

Human skin fungal infections (SFIs) affect 25% of the world's population. Most of these infections are superficial. The main limitation of current animal models of human superficial SFIs is that clinical presentation is different between the different species and animal models do not accurately reflect the human skin environment.

View Article and Find Full Text PDF

Traditional investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies.

View Article and Find Full Text PDF

The human fungal pathogen requires respiratory function for normal growth, morphogenesis, and virulence. Mitochondria therefore represent an enticing target for the development of new antifungal strategies. This possibility is bolstered by the presence of characteristics specific to fungi.

View Article and Find Full Text PDF

The high global burden of over one million annual lethal fungal infections reflects a lack of protective vaccines, late diagnosis and inadequate chemotherapy. Here, we have generated a unique set of fully human anti-Candida monoclonal antibodies (mAbs) with diagnostic and therapeutic potential by expressing recombinant antibodies from genes cloned from the B cells of patients suffering from candidiasis. Single class switched memory B cells isolated from donors serum-positive for anti-Candida IgG were differentiated in vitro and screened against recombinant Candida albicans Hyr1 cell wall protein and whole fungal cell wall preparations.

View Article and Find Full Text PDF

Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells.

View Article and Find Full Text PDF

Stress-activated protein kinase (SAPK) pathways are evolutionarily conserved eukaryotic signalling modules that are essential for the virulence of human pathogenic fungi. The Hog1 SAPK in Candida albicans is robustly phosphorylated in response to a number of host-imposed stresses, and is essential for virulence. The current dogma is that stress-induced phosphorylation activates the SAPK, and promotes its nuclear accumulation that is necessary for the expression of SAPK-dependent stress-protective genes.

View Article and Find Full Text PDF

Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing.

View Article and Find Full Text PDF

Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C.

View Article and Find Full Text PDF

The Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the 'p38-related' Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target.

View Article and Find Full Text PDF

Unlabelled: The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen.

View Article and Find Full Text PDF

As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target.

View Article and Find Full Text PDF

Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues.

View Article and Find Full Text PDF

During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses.

View Article and Find Full Text PDF

Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model.

View Article and Find Full Text PDF

Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources.

View Article and Find Full Text PDF

The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C.

View Article and Find Full Text PDF