A novel microscale device has been developed to enable the one-step continuous flow assembly of monodisperse nanoscale liposomes using three-dimensional microfluidic hydrodynamic focusing (3D-MHF) in a concentric capillary array. The 3D-MHF flow technique displays patent advantages over conventional methods for nanoscale liposome manufacture (i.e.
View Article and Find Full Text PDFResolution of synaptic vesicle neurotransmitter content has mostly been limited to the study of stimulated release in cultured cell systems, and it has been controversial as to whether synaptic vesicle transmitter levels are saturated in vivo. We use electrochemical cytometry to count dopamine molecules in individual synaptic vesicles in populations directly sampled from brain tissue. Vesicles from the striatum yield an average of 33,000 dopamine molecules per vesicle, an amount considerably greater than typically measured during quantal release at cultured neurons.
View Article and Find Full Text PDFPurpose: A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery.
Methods: Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. Relationships among flow conditions, lipid composition, and liposome size were evaluated; their impact on PEG and folate incorporation were determined through a combination of UV-vis absorbance measurements and characterization of liposome zeta potential.
Large solutes such as high molecular weight proteins can be difficult to encapsulate in lipid vesicles. Passive trapping of these macromolecular solutes during vesicle formation typically results in concentrations inside the vesicles that are much lower than in the external solution. Here, we investigated the effect of macromolecular crowding on passive encapsulation of biological macromolecules with molecular weights ranging from 52 kDa to 660 kDa within both individual giant lipid vesicles (GVs, > 3 microm diameter) and populations of 200 nm diameter large unilamellar vesicles (LUVs).
View Article and Find Full Text PDFThe vesicle serves as the primary intracellular unit for the highly efficient storage and release of chemical messengers triggered during signaling processes in the nervous system. This review highlights conventional and emerging analytical methods that have used microscopy, electrochemistry, and spectroscopy to resolve the location, time course, and quantal content characteristics of neurotransmitter release. Particular focus is on the investigation of the synaptic vesicle and its involvement in the fundamental molecular mechanisms of cell communication.
View Article and Find Full Text PDFThis work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH.
View Article and Find Full Text PDFThe primary method for neuronal communication involves the release of chemical messengers that are packaged intracellularly in vesicles. Although experiments measuring release at single cells have classically been thought to assess the entire content of vesicles, there is evidence in the literature that suggests that the total transmitter stored in vesicles is not expelled during exocytosis. In this work, we introduce a novel technology using a microfluidic-based platform to electrochemically probe individual PC12 cell vesicles isolated from the cell environment.
View Article and Find Full Text PDFThe primary method for neuronal communication involves the extracellular release of small molecules that are packaged in secretory vesicles. We have developed a platform to separate, lyse, and electrochemically measure the contents of single vesicles using a hybrid capillary-microfluidic device. This device incorporates a sheath-flow design at the outlet of the capillary for chemical lysis of vesicles and subsequent electrochemical detection.
View Article and Find Full Text PDFWe report the formation of self-assembled monolayers (SAMs) onto gold substrates by exposure to lithium dialkyldithiocarbamate salts [(Li+(R2DTC-), where R = n-propyl, n-butyl, n-octyl, n-decyl, n-dodecyl, or n-octadecyl] in ethanol or methylene chloride. The crystallinity and composition of the monolayers were assessed by polarized modulation infrared reflection absorption spectroscopy (PM-IRRAS), wettability was characterized by contact angles of water and hexadecane, thickness was measured by spectroscopic ellipsometry, and barrier properties determined by electrochemical impedance spectroscopy. While the shorter R2DTC-s formed monolayers with liquid-like packing, monolayers prepared from the longest R2DTC- (where R = n-octadecyl) exhibit similar thickness, crystallinity, wettability, and capacitance as monolayers prepared from n-octadecanethiol.
View Article and Find Full Text PDF