Publications by authors named "Donna M Gonzales"

Efficacy data on two malaria vaccines, RTS,S and R21, targeting circumsporozoite protein (CSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of CSP. We designed four rCSP-based vaccines in an effort to improve the diversity of the antibody response.

View Article and Find Full Text PDF

merozoite surface protein (MSP)2 is a target of parasite-neutralizing Abs. Inclusion of recombinant MSP2 (rMSP2) as a component of a multivalent malaria vaccine is of interest, but presents challenges. Previously, we used the highly immunogenic MSP8 as a carrier to enhance production and/or immunogenicity of malaria vaccine targets.

View Article and Find Full Text PDF

Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP1 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies.

View Article and Find Full Text PDF

CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution.

View Article and Find Full Text PDF

Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth.

View Article and Find Full Text PDF

Objective: We studied the expression and function of an mRNA-binding protein, zinc finger protein-36 (ZFP36), in vascular endothelial cells in vivo and in vitro. We tested the hypotheses that ZFP36 regulates inflammation in vascular endothelial cells and that it functions through direct binding to target cytokine mRNAs. We also tested whether ZFP36 inhibits nuclear factor-κB-mediated transcriptional responses in vascular endothelial cells.

View Article and Find Full Text PDF

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice).

View Article and Find Full Text PDF

Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia.

View Article and Find Full Text PDF

The molecular and cellular basis of coronavirus neurovirulence is poorly understood. Since neurovirulence may be determined at the early stages of infection of the central nervous system (CNS), we hypothesize that it may depend on the ability of the virus to induce proinflammatory signals from brain cells for the recruitment of blood-derived inflammatory cells. To test this hypothesis, we studied the interaction between coronaviruses (mouse hepatitis virus) of different neurovirulences with primary cell cultures of brain immune cells (astrocytes and microglia) and mouse tissues.

View Article and Find Full Text PDF

The A59 strain of coronavirus, mouse hepatitis virus (MHV), produces acute hepatitis, meningoencephalitis, and chronic demyelination. The authors have previously shown that the spike (S) glycoprotein gene of MHV contains determinants of virulence, hepatitis, and demyelination. They then identified viruses containing mutations in the S gene that exhibit alterations in viral pathogenesis.

View Article and Find Full Text PDF

Infection of mice with mouse hepatitis virus (MHV) strain A59 results in acute encephalitis, hepatitis, and chronic demyelinating disease. T lymphocytes play an important role in MHV infection, and costimulatory signals are an important component of T cell function. To elucidate the role of the main costimulatory molecule, CD28, in MHV pathogenesis and demyelination, we examined the kinetics of MHV-A59 infection in CD28 knockout mice.

View Article and Find Full Text PDF