Background Exercise is associated with a reduced risk of cardiovascular disease. Increased high-density lipoprotein cholesterol (HDL-C) levels are thought to contribute to these benefits, but much of the research in this area has been limited by lack of well-controlled subject selection and exercise interventions. We sought to study the effect of moderate and high-intensity exercise on HDL function, lipid/lipoprotein profile, and other cardiometabolic parameters in a homogeneous population where exercise, daily routine, sleep patterns, and living conditions were carefully controlled.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I) is the major component of HDL and central to the ability of HDL to stimulate ATP-binding cassette transporter A1 (ABCA1)-dependent, antiatherogenic export of cholesterol from macrophage foam cells, a key player in the pathology of atherosclerosis. Cell-mediated modifications of apoA-I, such as chlorination, nitration, oxidation, and proteolysis, can impair its antiatherogenic function, although it is unknown whether macrophages themselves contribute to such modifications. To investigate this, human monocyte-derived macrophages (HMDMs) were incubated with human apoA-I under conditions used to induce cholesterol export.
View Article and Find Full Text PDFDue to its limited healing potential within the inner avascular region, functional repair of the meniscus remains a significant challenge in orthopaedic surgery. Tissue engineering of a meniscus implant using meniscal cells offers the promise of enhancing the reparative process and achieving functional meniscal repair. In this work, using quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) analysis, we show that human fibrochondrocytes rapidly dedifferentiate during monolayer expansion on standard tissue culture flasks, representing a significant limit to clinical use of this cell population for meniscal repair.
View Article and Find Full Text PDFCollagen II, a major extracellular matrix component in cartilaginous tissues, undergoes fibrillogenesis under physiological conditions. The present study explored collagen II fiber formation in solution and in two- (coverslip) and three-dimensional (scaffold) environments under different incubation conditions. These conditions include variations in adsorption buffers, the presence of 1-ethyl-3-(3-dimenthylaminopropyl) carbodiimide/N-hydroxysuccinimide crosslinker and the nature of the material surfaces.
View Article and Find Full Text PDFMonocyte-derived macrophages (MDM) and multinucleated foreign body giant cells (FBGC) are the primary cell types that remain at the cell-material interface of polyurethane (PU)-based medical devices as a result of chronic inflammatory responses. In vitro studies have demonstrated that MDM possess degradative potential toward PU, which can result in device failure. Because most studies have followed the degradation potential, morphology, and function of these cells only once fully differentiated, the current study investigated the influence of a non-degradable control tissue culture-grade polystyrene (TCPS) surface relative to two degradable model polycarbonate-urethanes (PCNU), of different chemistry, on various parameters of MDM morphology and function during a 14-day differentiation time course.
View Article and Find Full Text PDFPhospholipase A(2) (PLA(2)) enzymes participate in a potent inflammatory pathway through the liberation of arachidonic acid upon hydrolysis of membrane glycerophospholipids. The presence of implanted polycarbonate-urethane (PCNU) materials, used in several medical applications, has the ability to influence inflammatory responses of human macrophages that are recruited to a tissue-material interface; however, the specific inflammatory pathways that are activated upon macrophage attachment to PCNU are largely unknown. Previous studies suggested the participation of PLA(2) pathways in material degradation with the use of chemical inhibitors, such as aristolochic acid (ARIST), however not accurately defining the specific PLA(2) enzymes involved.
View Article and Find Full Text PDFMonocyte-derived macrophages (MDM) are key inflammatory cells and are central to the foreign body response to implant materials. MDM have been shown to exhibit changes in actin cytoskeleton, multinucleation, cell size, and function in response to small alterations in polycarbonate-urethane (PCNU) surface chemistry. Although PCNU chemistry has an influence on de novo protein synthesis, no assessments of the protein expression profiles of MDM have yet been reported.
View Article and Find Full Text PDFHuman monocytes, isolated from whole blood, were seeded onto tissue culture grade polystyrene (PS) and three polycarbonate-based polyurethanes (PCNUs) (synthesized with either 1,6-hexane diisocyanate (HDI) or 4,4'-methylene bis-phenyl diisocyanate (MDI), poly(1,6-hexyl 1,2-ethyl carbonate) diol (PCN) and 1,4-butanediol (BD) in different stoichiometric ratios (HDI:PCN:BD 4:3:1 or 3:2:1 and MDI:PCN:BD 3:2:1) (referred to as HDI431, HDI321 and MDI321, respectively). Following their differentiation to monocyte-derived macrophages (MDMs) the cells were trypsinized and reseeded onto each of the PCNUs synthesized with either 14C-HDI or 14C-BD and degradation was measured by radiolabel release (RR). When the differentiation surface was MDI321, there was more RR from 14C-HDI431 than from any other surface (p < 0.
View Article and Find Full Text PDFActivation of the phospholipase A2 (PLA2) pathway is a key cell signaling event in the inflammatory response. The PLA2 family consists of a group of enzymes that hydrolyze membrane phospholipids, resulting in the liberation of arachidonic acid (AA), a precursor to pro-inflammatory molecules. Given the well-documented activating role of biomaterials in the inflammatory response to medical implants, the present study investigated the link between PLA2 and polycarbonate-based polyurethane (PCNU) biodegradation, and the effect that material surface had on PLA2 activation in the U937 cell line.
View Article and Find Full Text PDF