Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes.
View Article and Find Full Text PDFA complex interplay between the extracellular space, cytoplasm and individual organelles modulates Ca signaling to impact all aspects of cell fate and function. In recent years, the molecular machinery linking endoplasmic reticulum stores to plasma membrane Ca entry has been defined. However, the mechanism and pathophysiological relevance of store-independent modes of Ca entry remain poorly understood.
View Article and Find Full Text PDFGenomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets.
View Article and Find Full Text PDFThe secretory pathway Ca-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo.
View Article and Find Full Text PDFProgression of benign tumors to invasive, metastatic cancer is accompanied by the epithelial-to-mesenchymal transition (EMT), characterized by loss of the cell-adhesion protein E-cadherin. Although silencing mutations and transcriptional repression of the E-cadherin gene have been widely studied, not much is known about posttranslational regulation of E-cadherin in tumors. We show that E-cadherin is tightly coexpressed with the secretory pathway Ca-ATPase isoform 2, SPCA2 (), in breast tumors.
View Article and Find Full Text PDF