Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology.
View Article and Find Full Text PDFAxonal damage and the subsequent interruption of intact neuronal pathways in the spinal cord are largely responsible for the loss of motor function after injury. Further exacerbating this loss is the demyelination of neighboring uninjured axons. The post-injury environment is hostile to repair, with inflammation, a high expression of chondroitin sulfate proteoglycans (CSPGs) around the glial scar, and myelin breakdown.
View Article and Find Full Text PDFCells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone.
View Article and Find Full Text PDFBackground: The spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion.
View Article and Find Full Text PDFIntroduction: Treatments for patients with cauda equina injury are limited.
Methods: In this study, we first used retrograde labeling to determine the relative contributions of cauda equina motor neurons to intrinsic and extrinsic rat tail muscles. Next, we transected cauda equina ventral roots and proceeded to bridge the proximal and distal stumps with either a type I collagen scaffold coated in laminin (CL) or a collagen-laminin scaffold that was also seeded with Schwann cells (CLSC).
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats.
View Article and Find Full Text PDFWhile advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion.
View Article and Find Full Text PDFChondroitin sulfate proteoglycans (CSPGs) are widely expressed in the normal central nervous system, serving as guidance cues during development and modulating synaptic connections in the adult. With injury or disease, an increase in CSPG expression is commonly observed close to lesioned areas. However, these CSPG deposits form a substantial barrier to regeneration and are largely responsible for the inability to repair damage in the brain and spinal cord.
View Article and Find Full Text PDFThe formation of the glial scar following a spinal cord injury presents a significant barrier to the regenerative process. It is primarily composed of chondroitin sulfate proteoglycans (CSPGs) that can inhibit axonal sprouting and regeneration. Although the inhibitory effects on neurons are well documented, little is known about their effects on oligodendrocyte progenitor cells (OPCs).
View Article and Find Full Text PDFFollowing spinal cord injury (SCI), the demyelination of spared intact axons near the lesion site likely contributes to the loss of motor function. This demyelination occurs when oligodendrocytes, the myelinating cells of the central nervous system (CNS), are either destroyed during the initial trauma or die as a result of secondary pathology. In an attempt to remyelinate the affected axons, endogenous oligodendrocyte progenitor cells (OPCs) begin to accumulate at the border of demyelination.
View Article and Find Full Text PDFOligodendrocyte (OL) progenitor cells (OPCs) give rise to the myelinating cells of the central nervous system (CNS), the OL. To examine molecular changes involved in OPC differentiation, a microarray analysis was performed at several time points during OPC maturation. The results revealed significant expression levels of mRNA for reelin, one reelin receptor, very low density lipoprotein receptor (Vldlr), and the cytoplasmic adaptor molecule, disabled homolog 1 (Dab1).
View Article and Find Full Text PDFQuaking I (QKI) is a selective RNA-binding protein essential for myelination of the central nervous system. Three QKI isoforms with distinct C termini and subcellular localization, namely QKI-5, QKI-6, and QKI-7, are expressed in oligodendroglia progenitor cells (OPCs) prior to the initiation of myelin formation and implicated in promoting oligodendrocyte lineage development. However, the functional requirement for each QKI isoform and the mechanisms by which QKI isoforms govern OPC development still remain elusive.
View Article and Find Full Text PDFThe fragile X mental retardation protein (FMRP) is a selective RNA-binding protein whose function is implicated in regulating protein synthesis of its mRNA targets. The lack of FMRP leads to abnormal synapse development in the brain and impaired learning/memory. Although FMRP is predominantly expressed in neurons of the adult brain, whether FMRP also functions in glia during early development remains elusive, since expression of FMRP in glia has not been rigorously examined.
View Article and Find Full Text PDF