Publications by authors named "Donna J Devlin"

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants).

View Article and Find Full Text PDF

Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove on the composition and richness of associated soil bacterial communities.

View Article and Find Full Text PDF

Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes.

View Article and Find Full Text PDF

Premise Of The Study: The Last Glacial Maximum (LGM) was a period of massive range contraction. Post-LGM, water-dispersed coastal species, including the red mangrove (Rhizophora mangle), expanded poleward as propagules were transported by ocean currents. We assessed postglacial marine expansion pathways for R.

View Article and Find Full Text PDF