Publications by authors named "Donna F Stefanick"

Laser micro-irradiation across the nucleus rapidly generates localized chromatin-associated DNA lesions permitting analysis of repair protein recruitment in living cells. Recruitment of three fluorescently-tagged base excision repair factors [DNA polymerase β (pol β), XRCC1 and PARP1], known to interact with one another, was compared in gene-deleted mouse embryonic fibroblasts and in those expressing the endogenous factor. A low energy micro-irradiation (LEMI) forming direct single-strand breaks and a moderate energy (MEMI) protocol that additionally creates oxidized bases were compared.

View Article and Find Full Text PDF

Mouse fibroblasts lacking (null) DNA polymerase β (pol β) were transfected with fluorescently tagged pol β and stained with biomarkers to allow visualization within living cells by confocal microscopy. Transient transfection resulted in varying pol β expression levels. Separating cells into three groups based on pol β fluorescence intensity and morphological distribution, permitted analysis of the concentration dependence and spatial distribution of cytoplasmic pol β.

View Article and Find Full Text PDF
Article Synopsis
  • Formaldehyde (FA) is produced in cells through several metabolic processes and can be toxic in high levels, but its impact on mitochondrial function is not fully understood.
  • In a study using primary human fibroblast cells, increased FA concentration led to cell death through apoptosis and necrosis, disrupted cell cycle progression, and altered gene expression related to mitochondrial function.
  • Additionally, exposure to FA resulted in increased mitochondrial DNA double-strand breaks and structural changes in mitochondria, indicating that higher FA levels can lead to mitochondrial dysfunction.
View Article and Find Full Text PDF

Aprataxin (APTX) is a DNA-adenylate hydrolase that removes 5'-AMP blocking groups from abortive ligation repair intermediates. XRCC1, a multi-domain protein without catalytic activity, interacts with a number of known repair proteins including APTX, modulating and coordinating the various steps of DNA repair. CK2-phosphorylation of XRCC1 is thought to be crucial for its interaction with the FHA domain of APTX.

View Article and Find Full Text PDF

Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β.

View Article and Find Full Text PDF

Repair of DNA-protein crosslinks and oxidatively damaged DNA base lesions generates intermediates with nicks or gaps with abnormal and blocked 3'-phosphate and 5'-OH ends that prevent the activity of DNA polymerases and ligases. End cleaning in mammalian cells by Tdp1 and PNKP produces the conventional 3'-OH and 5'-phosphate DNA ends suitable for completion of repair. This repair function of PNKP is facilitated by its binding to the scaffold protein XRCC1, and phosphorylation of XRCC1 by CK2 at several consensus sites enables PNKP binding and recruitment to DNA damage.

View Article and Find Full Text PDF

The multi-domain protein XRCC1 is without catalytic activity, but can interact with a number of known repair proteins. The interaction between the N-terminal domain (NTD) of XRCC1 and DNA polymerase β (pol β) is critical for recruitment of pol β to sites of DNA damage and repair. Crystallographic and NMR approaches have identified oxidized and reduced forms of the XRCC1 NTD, and the corresponding forms of XRCC1 have been identified in cultured mouse fibroblast cells.

View Article and Find Full Text PDF

Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions.

View Article and Find Full Text PDF

Base excision repair (BER) is a primary mechanism for repair of base lesions in DNA such as those formed by exposure to the DNA methylating agent methyl methanesulfonate (MMS). Both DNA polymerase β (pol β)- and XRCC1-deficient mouse fibroblasts are hypersensitive to MMS. This is linked to a repair deficiency as measured by accumulation of strand breaks and poly(ADP-ribose) (PAR).

View Article and Find Full Text PDF

Unlabelled: PARP-1 is important for the recognition of both endogenous and exogenous DNA damage, and binds to DNA strand breaks including intermediates of base excision repair (BER). Once DNA-bound, PARP-1 becomes catalytically activated synthesizing PAR polymers onto itself and other repair factors (PARylation). As a result, BER repair proteins such as XRCC1 and DNA polymerase β (pol β) are more efficiently and rapidly recruited to sites of DNA damage.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) binds intermediates of base excision repair (BER) and becomes activated for poly(ADP-ribose) (PAR) synthesis. PAR mediates recruitment and functions of the key BER factors XRCC1 and DNA polymerase β (pol β) that in turn regulate PAR. Yet, the molecular mechanism and implications of coordination between XRCC1 and pol β in regulating the level of PAR are poorly understood.

View Article and Find Full Text PDF

Regulation of poly(ADP-ribose) (PAR) synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose) polymerase-1 (PARP-1) occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β).

View Article and Find Full Text PDF

Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell signaling system. It is proposed that activity-inhibited PARP-1 becomes immobilized at DNA repair intermediates, and that this blocks DNA repair and interferes with DNA replication, eventually promoting an S-phase checkpoint and G(2)-M block.

View Article and Find Full Text PDF

Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed.

View Article and Find Full Text PDF

Base excision repair (BER) can protect a cell after endogenous or exogenous genotoxic stress, and a deficiency in BER can render a cell hypersensitive to stress-induced apoptotic and necrotic cell death, mutagenesis, and chromosomal rearrangements. However, understanding of the mammalian BER system is not yet complete as it is extraordinarily complex and has many back-up processes that complement a deficiency in any one step. Due of this lack of information, we are unable to make accurate predictions on therapeutic approaches targeting BER.

View Article and Find Full Text PDF

The combination of poly(ADP-ribose)polymerase (PARP) inhibitors and alkylating agents is currently being investigated in cancer therapy clinical trials. However, the DNA lesions producing the synergistic cell killing effect in tumors are not fully understood. Treatment of human and mouse fibroblasts with the monofunctional DNA methylating agent methyl methanesulfonate (MMS) in the presence of a PARP inhibitor has been shown to trigger a cell cycle checkpoint response.

View Article and Find Full Text PDF

By limiting cell cycle progression following detection of DNA damage, checkpoints are critical for cell survival and genome stability. Methylated DNA damage, when combined with inhibition of PARP activity, results in an ATR-dependent S phase delay of the cell cycle. Here, we demonstrate that another checkpoint kinase, ATM, also is involved in the DNA damage response following treatment with a sub-lethal concentration of MMS combined with the PARP inhibitor 4-AN.

View Article and Find Full Text PDF

Inhibition of PARP activity results in extreme sensitization to MMS-induced cell killing in cultured mouse fibroblasts. In these MMS-treated cells, PARP inhibition is accompanied by an accumulation of S-phase cells that requires signaling by the checkpoint kinase ATR [J.K.

View Article and Find Full Text PDF

Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities.

View Article and Find Full Text PDF

Human fibroblasts, capable of expressing a kinase-dead form of ATR (ATRkd), can be sensitized to the cytotoxic effects of methyl methanesulfonate (MMS) by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN). The combination of MMS+4-AN results in accumulation of cells in S-phase of the cell cycle and activation of Chk1. Inhibition of ATR activity by expression of ATRkd suppresses the S-phase accumulation and partially reverses the Chk1 phosphorylation.

View Article and Find Full Text PDF

The activity of poly(ADP-ribose) polymerase (PARP) is highly stimulated following DNA damage resulting in formation of DNA nicks and strand breaks. This leads to modification of numerous proteins, including itself, using NAD(+) as substrate and to exhaustion of intracellular ATP. A highly cytotoxic concentration of the DNA methylating agent methyl methanesulfonate (MMS) results in cellular ATP depletion and cell death primarily by necrosis in both wild-type and DNA polymerase beta null mouse fibroblasts.

View Article and Find Full Text PDF

Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect.

View Article and Find Full Text PDF