Publications by authors named "Donna D'Agostino"

New therapies are needed for patients with T-cell lymphoblastic leukemia (T-ALL) who do not respond to standard chemotherapy. Our previous studies showed that the mTORC1 inhibitor everolimus increases reactive oxygen species (ROS) levels, decreases the levels of NADPH and glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP), and induces apoptosis in T-ALL cells. Studies in T-ALL-xenografted NOD/SCID mice demonstrated that everolimus improved their response to the glucocorticoid (GC) dexamethasone.

View Article and Find Full Text PDF

Human T-cell leukemia virus-1 (HTLV-1) is a retrovirus that persistently infects CD4+ T-cells, and is the causative agent of adult T-cell leukemia/lymphoma (ATLL), tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) and several inflammatory diseases. T-cell transformation by HTLV-1 is driven by multiple interactions between viral regulatory proteins and host cell pathways that govern cell proliferation and survival. Studies performed over the last decade have revealed alterations in the expression of many microRNAs in HTLV-1-infected cells and ATLL cells, and have identified several microRNA targets with roles in the viral life cycle and host cell turnover.

View Article and Find Full Text PDF

mTOR activation is a hallmark of T-cell acute lymphoblastic leukemia (T-ALL) and is associated with resistance to glucocorticoid (GC)-based chemotherapy. We previously showed that altering redox homeostasis primes T-ALL cells to GC-induced apoptosis. Here we investigated the connection between the mTOR pathway and redox homeostasis using pharmacological inhibitors and gene silencing.

View Article and Find Full Text PDF

The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers.

View Article and Find Full Text PDF

The onset of chemo-resistant recurrence represents the principal cause of high-grade serous ovarian carcinoma (HGSOC) death. HGSOC masses are characterized by a hypoxic microenvironment, which contributes to the development of this chemo-resistant phenotype. Hypoxia regulated-miRNAs (HRMs) represent a molecular response of cancer cells to hypoxia and are involved in tumor progression.

View Article and Find Full Text PDF

Robust non-invasive tests for prognostic stratification of bladder cancer (BCa) patients are in high demand. Following a comprehensive analysis of studies on BCa, we selected a panel of 29 microRNAs (miRNAs) and analyzed their levels in urine and plasma samples in a prospective cohort of 63 BCa patients (32 at high risk of recurrence and 31 low-risk cases) and 37 healthy controls using RT-qPCR. To design an assay suitable for large-scale testing, we applied a hierarchical pipeline to select the miRNAs that were not affected by confounding factors such as haematuria and urine specific gravity, and exceeded stringent cut-off criteria (fold change >2.

View Article and Find Full Text PDF

Human T cell leukemia virus type-1 (HTLV-1) was the first retrovirus found to cause cancer in humans, but the mechanisms that drive the development of leukemia and other diseases associated with HTLV-1 infection remain to be fully understood. This review describes the functional properties of p13, an 87-amino acid protein coded by HTLV-1 open reading frame II (orf-II). p13 is mainly localized in the inner membrane of the mitochondria, where it induces potassium (K) influx and reactive oxygen species (ROS) production, which can trigger either proliferation or apoptosis, depending on the ROS setpoint of the cell.

View Article and Find Full Text PDF

The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells.

View Article and Find Full Text PDF

Human T-lymphotropic virus type 1 (HTLV-1) and other members of the Deltaretrovirus genus code for a regulatory protein named Rex that binds to the Rex-responsive element present on viral mRNAs. Rex rescues viral mRNAs from complete splicing or degradation and guides them to the cytoplasm for translation. The activity of Rex is essential for expression of viral transcripts coding for the virion components and thus represents a potential target for virus eradication.

View Article and Find Full Text PDF

Approximately 20% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients are currently incurable due to primary or secondary resistance to glucocorticoid-based therapies. Here we employed an integrated approach to selectively kill T-ALL cells by increasing mitochondrial reactive oxygen species (ROS) using NS1619, a benzimidazolone that activates the K (BK) channel, and dehydroepiandrosterone (DHEA), which blunts ROS scavenging through inhibition of the pentose phosphate pathway. These compounds selectively killed T-ALL cell lines, patient-derived xenografts and primary cells from patients with refractory T-ALL, but did not kill normal human thymocytes.

View Article and Find Full Text PDF

Human T-lymphotropic virus 1 (HTLV-1) immortalizes T-cells and is the causative agent of adult T-cell leukemia/lymphoma (ATLL). HTLV-1 replication and transformation are governed by multiple interactions between viral regulatory proteins and host cell factors that remain to be fully elucidated. The present study investigated the impact of HTLV-1 infection on the expression of miR-34a, a microRNA whose expression is downregulated in many types of cancer.

View Article and Find Full Text PDF

Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.

View Article and Find Full Text PDF

Many investigations of the replication and pathogenesis of human T-cell leukemia virus type 1 (HTLV-1) employ chronically infected cell lines, cell lines stabilized from primary adult T-cell leukemia cells, and noninfected T-cell lines. The validity of data obtained from such studies depends on the unambiguous identification of each cell line, which can be performed by short-tandem-repeat (STR) profiling (DNA fingerprinting). While kit-based profiling represents the standard method for cell line authentication, not all labs have ready access to the required capillary electrophoresis equipment, and the costs of such tests can become substantial, especially if the cell lines are to be tested frequently.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) screening currently relies on prostate-specific antigen (PSA) testing and digital rectal examination. However, recent large-scale studies have questioned the long-term efficacy of these tests, and biomarkers that accurately identify PCa are needed.

Methods: We analysed the levels of circulating microRNAs (miRNAs) in patients with elevated PSA who were diagnosed with either localised PCa (n=36) or benign prostatic hyperplasia (BPH, n=31) upon biopsy.

View Article and Find Full Text PDF

Unlabelled: Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent.

View Article and Find Full Text PDF

Background: Human T cell leukemia virus type 1 (HTLV-1) gene expression is controlled by the key regulatory proteins Tax and Rex. The concerted action of these proteins results in a two-phase kinetics of viral expression that depends on a time delay between their action. However, it is difficult to explain this delay, as Tax and Rex are produced from the same mRNA.

View Article and Find Full Text PDF

Unlabelled: The present study employed mass sequencing of small RNA libraries to identify the repertoire of small noncoding RNAs expressed in normal CD4(+) T cells compared to cells transformed with human T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia/lymphoma (ATLL). The results revealed distinct patterns of microRNA expression in HTLV-1-infected CD4(+) T-cell lines with respect to their normal counterparts. In addition, a search for virus-encoded microRNAs yielded 2 sequences that originated from the plus strand of the HTLV-1 genome.

View Article and Find Full Text PDF

Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses that share a common overall genetic organization, splicing pattern, and ability to infect and immortalize T-cells in vitro. However, HTLV-1 and HTLV-2 exhibit a clearly distinct pathogenic potential in infected patients. To find clues to the possible viral determinants of the biology of these viruses, recent studies investigated the timing of expression and the intracellular compartmentalization of viral transcripts in ex-vivo samples from infected patients.

View Article and Find Full Text PDF

Recent efforts to understand the molecular networks governing normal T cell development and driving the neoplastic transformation of T cells have brought to light the involvement of microRNAs (miRNAs), a class of noncoding RNAs of approximately 22 nucleotides that regulate gene expression at the posttranscriptional level. In the present review, we compare the expression profiles of miRNAs in normal T cell development to that of transformed T cells using as a model adult T cell leukemia/lymphoma, an aggressive malignancy of mature CD4+ T cells that is caused by infection with human T cell leukemia virus type 1.

View Article and Find Full Text PDF

The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as 'simple' and 'complex', respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs.

View Article and Find Full Text PDF

Ontogenesis of T cells in the thymus is a complex process whose molecular control is poorly understood. The present study investigated microRNAs involved in human thymocyte differentiation by comparing the microRNA expression profiles of thymocytes at the double-positive, single-positive CD4(+) and single-positive CD8(+) maturation stages. Microarray analysis showed that each thymocyte population displays a distinct microRNA expression profile that reflects their developmental relationships.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) codes for 9 alternatively spliced transcripts and 2 major regulatory proteins named Tax and Rex that function at the transcriptional and posttranscriptional levels, respectively. We investigated the temporal sequence of HTLV-1 gene expression in primary cells from infected patients using splice site-specific quantitative RT-PCR. The results indicated a two-phase kinetics with the tax/rex mRNA preceding expression of other viral transcripts.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that infects more than 20 million people worldwide, is the etiological agent of ATLL (adult T-cell leukemia/lymphoma), an aggressive leukemia of CD4+ T lymphocytes which arises in a small percentage of infected individuals after a long clinical latency. Tumor emergence is attributed primarily to the oncogenic activity of the viral protein Tax, which drives the expression of viral transcripts and controls the expression and function of a broad variety of host-cell genes involved in proliferation, genetic stability and apoptosis. Nevertheless, many aspects of HTLV-1 replication, persistence and pathogenesis remain to be understood.

View Article and Find Full Text PDF

The present study investigated the function of p13, a mitochondrial protein of human T-cell leukemia virus type 1 (HTLV-1). Although necessary for viral propagation in vivo, the mechanism of function of p13 is incompletely understood. Drawing from studies in isolated mitochondria, we analyzed the effects of p13 on mitochondrial reactive oxygen species (ROS) in transformed and primary T cells.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) infection is characterized by life-long persistence of the virus in the host. While most infected individuals remain asymptomatic, 3-5% will eventually develop adult T-cell leukemia/lymphoma (ATLL) or tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM) after a clinical latency that can span years (TSP/HAM) to decades (ATLL). The major oncogenic determinant among HTLV-1 proteins is the Tax transactivator, which influences the expression and function of a great number of cellular proteins, drives cell proliferation, reduces cell death, and induces genetic instability.

View Article and Find Full Text PDF