Publications by authors named "Donna Butcher"

Metastasis is the leading cause of cancer-related deaths, yet its regulatory mechanisms are not fully understood. Small-cell lung cancer (SCLC) is the most metastatic form of lung cancer, with most patients presenting with widespread disease, making it an ideal model for studying metastasis. However, the lack of suitable preclinical models has limited such studies.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on specific clusters of CD8+ T cells, categorized as CD8-NOS2+COX2+ and CD8-NOS2-COX2+, which play a significant role in the immune response to tumors.
  • These unique cellular environments affect the spatial structure of CD8+ T cell interactions within tumors and can influence patient outcomes.
  • The findings suggest that existing treatments, like NOS inhibitors and NSAIDs, could potentially target these cellular neighborhoods to improve cancer therapy.
View Article and Find Full Text PDF
Article Synopsis
  • Immune therapy is becoming a key approach in cancer treatment, particularly for aggressive types like triple negative breast cancer (TNBC), where factors like COX2 limit treatment effectiveness.
  • A study revealed that combining radiation with the anti-inflammatory drug indomethacin significantly boosted the immune response, reduced tumor growth, and lowered metastasis in mouse models of TNBC.
  • The combination treatment led to better local control of tumors and increased survival rates by enhancing immune activity, suggesting that existing NSAIDs could improve the success of radiation therapy in cancer patients.
View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy.

View Article and Find Full Text PDF
Article Synopsis
  • The blood-tumor barrier (BTB) in malignant glioma limits the effectiveness of cytotoxic drugs, and this study investigates how ibrutinib, a drug already approved for lymphoma, impacts BTB function.
  • Ibrutinib was found to dose-dependently reduce brain endothelial cell adhesion and disrupt tight junctions, enhancing penetration of the drug doxil into the tumor and significantly reducing glioma cell viability.
  • The combination of ibrutinib and doxil not only improved drug concentration in the brain but also extended the survival of rodent glioma models, highlighting ibrutinib’s potential to enhance therapeutic efficacy in glioma treatment.
View Article and Find Full Text PDF

A primary issue with nanomedicine biological evaluation is determination of nanoparticle carrier tissue distribution and stability. Here we present a method to evaluate nanomedicine distribution in tissues that is applicable to most nanomedicine constructs. This method utilizes immunohistochemical (IHC) analysis of an Alexa Fluor 488-tag and/or polyethylene glycol (PEG), a very common nanomedicine component, for tissue localization.

View Article and Find Full Text PDF

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d.

View Article and Find Full Text PDF

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression.

View Article and Find Full Text PDF

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic.

View Article and Find Full Text PDF

Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using -driven ablation of gene in TEC, we identified as a critical factor in TEC development. deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed.

View Article and Find Full Text PDF

Background: Epithelial ovarian cancer (EOC) is a global health burden, with the poorest five-year survival rate of the gynecological malignancies due to diagnosis at advanced stage and high recurrence rate. Recurrence in EOC is driven by the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that are supported by a complex extracellular matrix and immunosuppressive microenvironment. To target TICs to prevent recurrence, we identified genes critical for TIC viability from a whole genome siRNA screen.

View Article and Find Full Text PDF

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ) and ABCG2 (encoded by ) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human gene: , , , and .

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore the combination of chemotherapy and DNA damage response (DDR) inhibitors, focusing on using tumor-targeted chemotherapy to minimize toxicities.
  • A phase I trial tested sacituzumab govitecan, an antibody-drug conjugate, with the ATR inhibitor berzosertib, involving twelve patients at increasing dose levels.
  • The treatment showed improved safety with no severe adverse effects, leading to favorable tumor regressions in some patients, suggesting a promising new approach for better delivering cancer therapies.
View Article and Find Full Text PDF

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines.

View Article and Find Full Text PDF

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines.

View Article and Find Full Text PDF

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8 T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression.

View Article and Find Full Text PDF

Purpose: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS.

View Article and Find Full Text PDF

Glycosylation is a vital post-translational modification involved in a range of biological processes including protein folding, signaling, and cell-cell interactions. In 2011, a new type of -linked glycosylation was discovered, wherein the side-chain oxygen of tyrosine is modified with a GalNAc residue (GalNAc-Tyr). At present, very little is known about GalNAc-Tyr prevalence, function, or biosynthesis.

View Article and Find Full Text PDF

The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear.

View Article and Find Full Text PDF

Background: Mammographic breast density (MBD) decline post-tamoxifen initiation is a favorable prognostic factor in estrogen receptor (ER)-positive breast cancer (BC) and has potential utility as a biomarker of tamoxifen response. However, the prognostic value of MBD decline may vary by molecular characteristics among ER-positive patients.

Methods: We investigated associations between MBD decline (≥10% vs <10%) and breast cancer-specific mortality (BCSM) among ER-positive breast cancer patients aged 36-87 years at diagnosis treated with tamoxifen at Kaiser Permanente Northwest (1990-2008).

View Article and Find Full Text PDF

Capillary endothelial cells of the human blood-brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5.

View Article and Find Full Text PDF

Retroviruses cause cancers in animals by integrating in or near oncogenes. Although HIV-1 infection increases the risk of cancer, most of the risk is associated with immunodeficiency and coinfection by oncogenic virus (Epstein-Barr virus, Kaposi sarcoma herpesvirus, and human papillomavirus). HIV-1 proviruses integrated in some oncogenes cause clonal expansion of infected T cells in vivo; however, the infected cells are not transformed, and it is generally believed that HIV-1 does not cause cancer directly.

View Article and Find Full Text PDF

Purpose: PSMA overexpression has been associated with aggressive prostate cancer (PCa). However, PSMA PET imaging has revealed highly variable changes in PSMA expression in response to ADT treatment ranging from increases to moderate decreases. To better understand these PSMA responses and potential relationship to progressive PCa, the PET imaging agent, [F]DCFPyL, was used to assess changes in PSMA expression in response to ADT using genomically characterized LuCaP patient-derived xenograft mouse models (LuCaP-PDXs) which were found to be sensitive to ADT (LuCaP73 and LuCaP136;CS) or resistant (LuCaP167;CR).

View Article and Find Full Text PDF