Background: is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted plasmid genes and their contribution to cell fitness has not been hitherto addressed.
View Article and Find Full Text PDFBackground: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013).
View Article and Find Full Text PDFBackground: Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production.
View Article and Find Full Text PDFEfficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH).
View Article and Find Full Text PDFLignocellulosic hydrolysate (LCH) inhibitors are a large class of bioactive molecules that arise from pretreatment, hydrolysis, and fermentation of plant biomass. These diverse compounds reduce lignocellulosic biofuel yields by inhibiting cellular processes and diverting energy into cellular responses. LCH inhibitors present one of the most significant challenges to efficient biofuel production by microbes.
View Article and Find Full Text PDFBackground: Nosocomial infections often lead to sepsis and multisystem organ failure in critically injured patients, including burn and trauma patients. A better understanding of the bacterial response to the host immune system is essential to develop better antimicrobials against pathogens. Pseudomonas aeruginosa combats host-initiated oxidant stress through expression of the transactivating factor, OxyR.
View Article and Find Full Text PDFStandard biochemical tests have revealed that hemin and menadione auxotrophic Staphylococcus aureus small-colony variants (SCVs) exhibit multiple phenotypic changes. To provide a more complete analysis of the SCV phenotype, two genetically defined mutants with a stable SCV phenotype were comprehensively tested. These mutants, generated via mutations in menD or hemB that yielded menadione and hemin auxotrophs, were subjected to phenotype microarray (PM) analysis of over 1,500 phenotypes (including utilization of different carbon, nitrogen, phosphate, and sulfur sources; growth stimulation or inhibition by amino acids and other nutrients, osmolytes, and metabolic inhibitors; and susceptibility to antibiotics).
View Article and Find Full Text PDFSmall colony variants (SCVs) of Staphylococcus aureus were generated via mutations in menD or hemB, yielding menadione and hemin auxotrophs, respectively, and studied in the rabbit endocarditis model. No differences in the 95% infectious dose occurred between strains with regard to seeding heart valves ( approximately 10(6) cfu) or other target organs. No differences were observed between the response of the hemB mutant to oxacillin therapy and that of the parent strain in any target tissues, and significant reductions in bacterial densities were seen in all tissues (compared with untreated controls).
View Article and Find Full Text PDF