Cerebrospinal fluid (CSF) is a complex fluid filling the ventricular system and surrounding the brain and spinal cord. Although the bulk of CSF is created by the choroid plexus, a significant fraction derives from the interstitial fluid in the brain and spinal cord parenchyma. For this reason, CSF can often be used as a source of pharmacodynamic and prognostic biomarkers to reflect biochemical changes occurring within the brain.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2015
The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy.
View Article and Find Full Text PDFIn Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology.
View Article and Find Full Text PDFFilamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes.
View Article and Find Full Text PDFA hallmark of Alzheimer's disease (AD) pathology is the accumulation of brain amyloid β-peptide (Aβ), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aβ and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling.
View Article and Find Full Text PDFA series of (N-benzyl-N-phenylsulfonamido)alkyl amides were developed from classic and parallel synthesis strategies. Compounds with good in vitro and in vivo γ-secretase activity were identified and described.
View Article and Find Full Text PDFTau is a microtubule (MT)-stabilizing protein that is altered in Alzheimer's disease (AD) and other tauopathies. It is hypothesized that the hyperphosphorylated, conformationally altered, and multimeric forms of tau lead to a disruption of MT stability; however, direct evidence is lacking in vivo. In this study, an in vivo stable isotope-mass spectrometric technique was used to measure the turnover, or dynamicity, of MTs in brains of living animals.
View Article and Find Full Text PDFThe synthesis, evaluation, and structure-activity relationships of a set of related constrained diaminopropane inhibitors of BACE-1 are described. The full in vivo profile of an optimized inhibitor in both normal and P-gp deficient mice is compared with data generated in normal rats.
View Article and Find Full Text PDFThe synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2011
Levels of tau in cerebrospinal fluid (CSF) are elevated in Alzheimer's disease (AD) patients. It is believed this elevation is related to the tau pathology and neurodegeneration observed in AD, but not all tauopathies have increased CSF tau. There has been little pre-clinical work to investigate mechanisms of increased CSF tau due to the difficulty in collecting CSF samples from mice, the most commonly used pre-clinical models.
View Article and Find Full Text PDFHeterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs.
View Article and Find Full Text PDFDuring the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-β precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aβ40 IC50 = 0.
View Article and Find Full Text PDFTherapeutic approaches for Alzheimer's disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa beta-amyloid (Abeta) peptides, with the more amyloidogenic, 42 amino acid form (Abeta42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Abeta42, amyloid therapeutics aim to reduce the amount of toxic Abeta42 aggregates.
View Article and Find Full Text PDFThe amyloid-beta (Abeta) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-beta precursor protein (APP) through consecutive proteolytic cleavages by beta-site APP-cleaving enzyme and gamma-secretase. Unexpectedly gamma-secretase inhibitors can increase the secretion of Abeta peptides under some circumstances. This "Abeta rise" phenomenon, the same inhibitor causing an increase in Abeta at low concentrations but inhibition at higher concentrations, has been widely observed.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2008
The synthesis and gamma-secretase inhibition data for a series of carbamate-appended N-alkylsulfonamides are described. Carbamate 54 was found to significantly reduce brain Abeta in transgenic mice. 54 was also found to possess markedly improved brain levels in transgenic mice compared to previously disclosed 1 and 2.
View Article and Find Full Text PDFThe synthesis and gamma-secretase inhibition data for a series of nitrogen-appended N-alkylsulfonamides (11-47) are described. Inhibition of brain Abeta in transgenic mice was demonstrated by two of these compounds (23 and 44).
View Article and Find Full Text PDFA series of amino-caprolactam sulfonamides were developed from a screening hit. Compounds with good in vitro and in vivo gamma-secretase activity are reported.
View Article and Find Full Text PDFReduction of brain beta-amyloid peptide (Abeta) synthesis by gamma-secretase inhibitors is a promising approach for the treatment of Alzheimer's disease. However, measurement of central pharmacodynamic effects in the Alzheimer's disease patient will be a challenge. Determination of drug occupancy may facilitate the analysis of efficacy of gamma-secretase inhibitors in a clinical setting.
View Article and Find Full Text PDFA series of N-alkylbenzenesulfonamides were developed from a high throughput screening hit. Classic and parallel synthesis strategies were employed to produce compounds with good in vitro and in vivo gamma-secretase activity.
View Article and Find Full Text PDFWe report on the design of benzodiazepinones as peptidomimetics at the carboxy terminus of hydroxyamides. Structure-activity relationships of diazepinones were investigated and orally active gamma-secretase inhibitors were synthesized. Active metabolites contributing to Abeta reduction were identified by analysis of plasma samples from Tg2576 mice.
View Article and Find Full Text PDFRecent findings suggest that Alzheimer's dementia may be mediated by soluble beta amyloid (Abeta) more than the deposits of aggregated, insoluble Abeta, and vulnerability to cognitive deficits after scopolamine challenge may help identify AD even in patients that are still pre-symptomatic. The objectives of the present experiments were to determine if vulnerability to cognitive deficits after scopolamine challenge is related to levels of soluble Abeta, and if levels of soluble Abeta are more closely related to cognitive deficits than levels of insoluble Abeta, even in aged, transgenic mice, after they have developed very high levels of insoluble Abeta. Aged F-344 rats and young mice over-expressing the Swedish mutation in the human amyloid precursor protein (APPsw; Tg2576+) had elevated levels of soluble Abeta, and were more vulnerable to scopolamine challenge in the Morris water maze (MWM), relative to young rats and Tg2576- mice; but, among individual animals, higher levels of soluble Abeta were not correlated with vulnerability to scopolamine.
View Article and Find Full Text PDFThe amyloid hypothesis, which states that beta-amyloid (Abeta) aggregates cause the onset and progression of Alzheimer's disease (AD), is a leading proposal to explain AD aetiology. Based on this hypothesis, compounds that inhibit gamma-secretase, one of the enzymes responsible for forming Abeta, are potential therapeutics for AD. Preclinical studies clearly establish that gamma-secretase inhibitors can reduce brain Abeta in rodent models.
View Article and Find Full Text PDFA primary pathological feature of Alzheimer's disease is beta-amyloid (Abeta)-containing plaques in brain and cerebral vasculature. Reductions in the formation of Abeta peptides by gamma-secretase inhibitors may be a viable therapy for reducing Abeta in Alzheimer's disease. Here we report on the effects of two orally active gamma-secretase inhibitors.
View Article and Find Full Text PDF2,3-Benzodiazepin-1,4-diones were designed as peptidomimetics at the carboxy terminus of hydroxyamides. Inhibition of brain Abeta production was improved by one of the compounds containing constrained modification.
View Article and Find Full Text PDF