Publications by authors named "Donkervoort S"

Purpose: Heterozygous pathogenic variants in SPTAN1 cause a diverse spectrum of neurogenetic disorders ranging from peripheral and central nervous system involvement to complex syndromic presentations. We set out to investigate the role of SPTAN1 in genetically unsolved hereditary myopathies.

Methods: Through international collaboration we identified 14 families with distal weakness and heterozygous SPTAN1 loss-of-function variants.

View Article and Find Full Text PDF

PAX7 is a myogenesis transcription factor important for satellite cell specification and function and thus involved in muscle growth, maintenance, repair and regeneration. Recently, a new autosomal recessive congenital myopathy was described that is caused by biallelic variants in . Our aim is to describe phenotype and whole-body muscle MRI with follow-up imaging findings in a patient with a novel homozygous missense variant in We also compare our patients' imaging features with a patient reported in the initial study, to identify a possible emerging pattern for PAX7-congenital myopathy.

View Article and Find Full Text PDF

Background: The accurate diagnosis of titin-related myopathies (-RM) is challenging due to the "gigantism" of the coding gene with an incompletely understood landscape of normal genetic variation, an increasing number of pathogenic variants, and wide phenotypic variability of both cardiac and muscle involvement. Particularly in situations of potentially incomplete genotypes, clinicians need more phenotyping tools to help confidently determine the pathogenicity of variants in and accurately diagnose titinopathies.

Objective: To illustrate the pattern of muscle involvement found by muscle imaging in patients with RM.

View Article and Find Full Text PDF

Biallelic variants in ARL6IP1 are associated with a rare, complicated form of progressive hereditary spastic paraplegia. Among the few cases reported thus far, two distinct phenotypic clusters with upper and lower motor neuron pathology and varying severities have emerged. Here, we describe a proband who presented with decreased fetal movements, intrauterine growth retardation, arthrogryposis multiplex congenita (AMC), dysmorphic features, weakness and hypotonia.

View Article and Find Full Text PDF

Objective: While there have been several reports of patients with dominantly acting COL12A1 variants, few cases of the more severe recessive Collagen XII-related disorders have previously been documented.

Methods: We present detailed clinical, immunocytochemical, and imaging data on eight additional patients from seven families with biallelic pathogenic variants in COL12A1.

Results: All patients presented with a consistent constellation of congenital onset clinical features: hypotonia, dysmorphic features, most notably gingival hypertrophy, prominent distal joint hyperlaxity, with co-occurring contractures of large joints, and variable muscle involvement, evident both clinically and on muscle imaging.

View Article and Find Full Text PDF

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Introduction: Structural variants (SVs) of the nebulin gene (), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .

View Article and Find Full Text PDF

Background: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.

Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.

View Article and Find Full Text PDF

Purpose: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome, or panel sequencing data sets aligned to a GRCh37, GRCh38, or T2T reference genome.

Methods: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs.

View Article and Find Full Text PDF
Article Synopsis
  • Rigid spine syndrome is a rare condition in children marked by progressive scoliosis, neck and spine stiffness, muscle weakness, and breathing issues, primarily linked to genetic variations in the SELENON gene.
  • Recent research identified additional genetic variants in the HMGCS1 gene in five patients, suggesting it plays a role in this syndrome, despite it not being previously linked to any diseases.
  • Functional studies of the HMGCS1 variants showed altered protein stability and activity, and experiments in zebrafish indicated that these mutations severely impact development, but can be rescued by introducing healthy HMGCS1 mRNA.
View Article and Find Full Text PDF
Article Synopsis
  • Neurogenetic disorders linked to mutations in spectrin genes lead to a wide range of symptoms, from peripheral nervous system issues to complex syndromes, emphasizing their diverse impact.
  • An international study identified 14 families with unexplained distal weakness due to heterozygous loss-of-function variants, collecting standardized clinical and imaging data to analyze the condition further.
  • The research found that all 20 patients exhibited early childhood onset of distal weakness with varying severity, along with associated foot abnormalities and muscle changes, confirming the link between these genetic variants and a new syndrome characterized by primarily myogenic effects.
View Article and Find Full Text PDF

Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.

View Article and Find Full Text PDF

Importance: The 1-year results of the SECURE trial, a randomized trial comparing a restrictive strategy vs usual care for select patients with symptomatic cholelithiasis for cholecystectomy, resulted in a significantly lower operation rate after restrictive strategy. However, a restrictive strategy did not result in more pain-free patients at 1 year.

Objective: To gauge pain level and determine the proportion of pain-free patients, operation rate, and biliary and surgical complications at the 5-year follow-up.

View Article and Find Full Text PDF

Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized.

View Article and Find Full Text PDF

Background And Objectives: Omigapil is a small molecule which inhibits the GAPDH-Siah1-mediated apoptosis pathway. Apoptosis is a pathomechanism underlying the congenital muscular dystrophy subtypes LAMA2-related dystrophy (LAMA2-RD) and COL6-related dystrophy (COL6-RD). Studies of omigapil in the (dy/dy) LAMA2-RD mouse model demonstrated improved survival, and studies in the (dy/dy) LAMA2-RD mouse model and the (Col6a1) COL6-RD mouse model demonstrated decreased apoptosis.

View Article and Find Full Text PDF

Pathogenic variants in were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Intracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers sequenced the genomes of 822 families with suspected rare monogenic diseases that were previously undiagnosed through standard genetic tests, including exome sequencing.
  • They found that genome sequencing provided a molecular diagnosis for 29.3% of the initial families, with 8.2% requiring genome sequencing to identify variants that exome sequencing missed.
  • The study showed that both research and clinical approaches could benefit from genome sequencing, demonstrating its importance in uncovering previously undetected genetic variations.
View Article and Find Full Text PDF
Article Synopsis
  • Collagen VI-related dystrophies (COL6-RDs) include a range of conditions such as Ullrich congenital muscular dystrophy (UCMD), which features severe muscle weakness and respiratory issues, and Bethlem muscular dystrophy, which has milder and later-presenting symptoms.
  • Some patients with symptoms typical of COL6-RDs were previously undiagnosed until a deep intronic variant in COL6A1 was identified, leading to a severe form of UCMD in a cohort of 44 patients, except for one with a milder phenotype.
  • The study suggests that a new pseudoexon skipping therapy could effectively reduce the severity of UCMD symptoms by targeting the abnormal transcripts
View Article and Find Full Text PDF

Biallelic pathogenic variants in the gene encoding nebulin () are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.

View Article and Find Full Text PDF

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast () and TnI-slow (), are predominantly expressed in fast- and slow-twitch myofibers, respectively. variants are a rare cause of arthrogryposis, whereas variants have not been conclusively established to cause skeletal myopathy.

View Article and Find Full Text PDF

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform.

View Article and Find Full Text PDF

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene.

View Article and Find Full Text PDF
Article Synopsis
  • SNURPORTIN-1 (SNUPN) is important for transporting proteins in the cell but its exact job wasn’t known before.
  • Researchers studied 18 kids with a rare type of muscular dystrophy and found that changes in the SNUPN gene might be causing their health issues.
  • The study showed that the faulty SNUPN protein doesn't work properly, leading to problems in muscle cells and causing symptoms of muscular dystrophy in these kids.
View Article and Find Full Text PDF