EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1 R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits.
View Article and Find Full Text PDFThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration.
View Article and Find Full Text PDFThe ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes.
View Article and Find Full Text PDFIn the human ocular lens it is now realized that post-translational modifications can alter protein function and/or localization in fiber cells that no longer synthesize proteins. The specific sites of post-translational modification to the abundant ocular lens membrane proteins AQP0 and MP20 have been previously identified and their functional effects are emerging. To further understand how changes in protein function and/or localization induced by these modifications alter lens homeostasis, it is necessary to determine the spatial distributions of these modifications across the lens.
View Article and Find Full Text PDFMouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice.
View Article and Find Full Text PDFAge related macular degeneration (AMD) is the primary cause of vision loss in the western world (Friedman et al., Arch Ophthalmol 122:564-572, 2004). The first clinical indication of AMD is the presence of drusen.
View Article and Find Full Text PDFInherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined.
View Article and Find Full Text PDFMacular degenerations, inherited and age related, are important causes of vision loss. Human genetic studies have suggested perturbation of the complement system is important in the pathogenesis of age-related macular degeneration. The mechanisms underlying the involvement of the complement system are not understood, although complement and inflammation have been implicated in drusen formation.
View Article and Find Full Text PDFScrub typhus, caused by infection with Orientia tsutsugamushi, is probably the most common severe rickettsial disease. Early diagnosis followed by treatment with antibiotics such as doxycycline or chloramphenicol usually quickly decreases fever in patients, and they often recover well from other symptoms of the disease. However, poorly responsive cases have been reported from northern Thailand and southern India.
View Article and Find Full Text PDFThe present study was performed in order to obtain structural and quantitative information regarding the modifications that take place in the human lens as a result of tryptophan oxidation. In particular, the early tryptophan oxidation product, oxindolealanine (OIA) has been detected in lyophilized and hydrolyzed cataractous lenses by mass spectrometry. OIA was confirmed in human cataract samples by observing its ion (m/z 221), fragmentation pattern and absorption spectrum.
View Article and Find Full Text PDFBecause of the lack of protein turnover in fiber cells of the ocular lens, Aquaporin 0 (AQP0), the most abundant membrane protein in the lens, undergoes extensive post-translational modification with fiber cell age. To map the distribution of modified forms of AQP0 within the lens, normal human lenses ranging in age from 34 to 38 were concentrically dissected into several cortical and nuclear sections. Membrane proteins still embedded in the membranes were digested with trypsin, and the resulting C-terminal peptides of AQP0 were analyzed by HPLC tandem mass spectrometry, permitting the identification of modifications and estimation of their abundance.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2003
Purpose: To first assess the distribution of posttranslationally truncated products of aquaporin 0 (AQP0) in dissected sections of a normal human lens and to determine the effect of backbone cleavage on the water permeability of AQP0.
Methods: A 27-year-old lens was concentrically dissected into six sections. Membrane protein was isolated from each section and cleaved with cyanogen bromide, and the peptides were separated and analyzed by reverse-phase (RP)-HPLC-mass spectrometry (MS).
Monkey lenses were incubated with 35S-L-cysteine for various times and the movement of label within the lens followed by autoradiography. Cysteine appeared to enter primarily at the germinative region of the lens. No evidence was found for major transport through either the anterior or posterior faces of the lens.
View Article and Find Full Text PDF