Publications by authors named "Donita Brady"

S-acyltransferases play integral roles in essential physiological processes including regulation of oncogenic signaling pathways. While discovered over 40 years ago the field still lacks specific S-acylation inhibitors thus the potential benefit of pharmacologically targeting S-acyltransferases for human disease is still unknown. Here we report the identification of an orally bioavailable acyltransferase inhibitor SD-066-4 that inhibits the acyltransferase ZDHHC20.

View Article and Find Full Text PDF

Background & Aims: The intestinal epithelium interfaces with a diverse milieu of luminal contents while maintaining robust digestive and barrier functions. Facultative intestinal stem cells are cells that survive tissue injury and divide to re-establish the epithelium. Prior studies have shown autophagic state as functional marker of facultative intestinal stem cells, but regulatory mechanisms are not known.

View Article and Find Full Text PDF

We are 52 Black scientists. Here, we establish the context of Juneteenth in STEMM and discuss the barriers Black scientists face, the struggles they endure, and the lack of recognition they receive. We review racism's history in science and provide institutional-level solutions to reduce the burdens on Black scientists.

View Article and Find Full Text PDF

Spencer-Smith et al. (2022) investigate multiple functions of the BRAF cysteine-rich domain (CRD), finding distinct classes of RASopathy-associated BRAF mutations and unique features among RAF paralogs that may contribute to the spectrum of mutations observed in disease.

View Article and Find Full Text PDF

Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry.

View Article and Find Full Text PDF

Casein kinase 2 (CK2) is an evolutionarily conserved serine/threonine kinase implicated in a wide range of cellular functions and known to be dysregulated in various diseases such as cancer. Compared to most other kinases, CK2 exhibits several unusual properties, including dual co-substrate specificity and a high degree of promiscuity with hundreds of substrates described to date. Most paradoxical, however, is its apparent constitutive activity: no definitive mode of catalytic regulation has thus far been identified.

View Article and Find Full Text PDF

Tsvetkov et al. (2022) discovered a new form of cell death triggered by targeted accumulation of Cu in mitochondria that drives lipoylated TCA cycle enzyme aggregation via direct Cu binding.

View Article and Find Full Text PDF

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle.

View Article and Find Full Text PDF

PAX8 is a master transcription factor that is essential during embryogenesis and promotes neoplastic growth. It is expressed by the secretory cells lining the female reproductive tract, and its deletion during development results in atresia of reproductive tract organs. Nearly all ovarian carcinomas express PAX8, and its knockdown results in apoptosis of ovarian cancer cells.

View Article and Find Full Text PDF

Unlabelled: The transition metal copper (Cu) is an essential micronutrient required for development and proliferation, but the molecular mechanisms by which Cu contributes to these processes is not fully understood. Although traditionally studied as a static cofactor critical for the function of Cu-dependent enzymes, an expanding role for Cu is emerging to include its novel function as a dynamic mediator of signaling processes through the direct control of protein kinase activity. We now appreciate that Cu directly binds to and influences MEK1/2 and ULK1/2 kinase activity, and show here that reductions in MAPK and autophagic signaling are associated with dampened growth and survival of oncogenic BRAF-driven lung adenocarcinoma cells upon loss of Ctr1.

View Article and Find Full Text PDF

Several cancers and rare genetic diseases are caused by dysregulation in the RAS signaling pathway. RAS proteins serve as molecular switches that regulate pathways involved in cellular growth, differentiation and survival. These pathways have been an intense area of investigation for four decades, since the initial identification of somatic RAS mutations linked to human cancers.

View Article and Find Full Text PDF

Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated, however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation.

View Article and Find Full Text PDF

Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient.

View Article and Find Full Text PDF

Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2.

View Article and Find Full Text PDF

Metals are vital for life as they are necessary for essential biological processes. Traditionally, metals are categorized as either dynamic signals or static cofactors. Redox-inactive metals such as calcium (Ca), potassium (K), sodium (Na), and zinc (Zn) signal through large fluctuations in their metal-ion pools.

View Article and Find Full Text PDF

The COVID-19 pandemic halted research operations at academic medical centers. This shutdown has adversely affected research infrastructure, the current research workforce, and the research pipeline. We discuss the impact of the pandemic on overall research operations, examine its disproportionate effect on underrepresented minority researchers, and provide concrete strategies to reverse these losses.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), the most common primary liver cancer, of which ∼800 000 new cases will be diagnosed worldwide this year, portends a five-year survival rate of merely 17% in patients with unresectable disease. This dismal prognosis is due, at least in part, from the late stage of diagnosis and the limited efficacy of systemic therapies. As a result, there is an urgent need to identify risk factors that contribute to HCC initiation and provide targetable vulnerabilities to improve patient survival.

View Article and Find Full Text PDF

Cancer research and cancer care require deliberate attention to racial diversity. Here we comment on the ongoing issues of diversity and racism in cancer research.

View Article and Find Full Text PDF

Although the transition metal copper (Cu) is an essential nutrient that is conventionally viewed as a static cofactor within enzyme active sites, a non-traditional role for Cu as a modulator of kinase signalling is emerging. Here, we found that Cu is required for the activity of the autophagic kinases ULK1 and ULK2 (ULK1/2) through a direct Cu-ULK1/2 interaction. Genetic loss of the Cu transporter Ctr1 or mutations in ULK1 that disrupt the binding of Cu reduced ULK1/2-dependent signalling and the formation of autophagosome complexes.

View Article and Find Full Text PDF

The principal unmet need in BRAF-positive melanoma is lack of an adequate therapeutic strategy capable of overcoming resistance to clinically approved targeted therapies against oncogenic BRAF and/or the downstream MEK1/2 kinases. We previously discovered that copper (Cu) is required for MEK1 and MEK2 activity through a direct Cu-MEK1/2 interaction. Repurposing the clinical Cu chelator tetrathiomolybdate (TTM) is supported by efficacy in BRAF-driven melanoma models, due in part to inhibition of MEK1/2 kinase activity.

View Article and Find Full Text PDF

Copper is involved in different hallmarks of cancer, including metastasis, but responsible copper-binding proteins and pathways are not clear. The copper chaperone ATOX1 was recently shown to play a role in breast cancer cell migration, which is a key step in metastasis. Since most cancer-related deaths are due to metastasis, we hypothesized that ATOX1 mRNA expression may be associated with breast cancer disease progression and thus, a prognostic biomarker in breast cancer.

View Article and Find Full Text PDF

Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed.

View Article and Find Full Text PDF

Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge.

View Article and Find Full Text PDF

Copper (Cu) is a tightly regulated micronutrient that functions as a structural or catalytic cofactor for specific proteins essential for a diverse array of biological processes. While the study of the extremely rare genetic diseases, Menkes and Wilson, has highlighted the requirement for proper Cu acquisition and elimination in biological systems for cellular growth and proliferation, the importance of dedicated Cu transport systems, like the Cu chaperones ATOX1 and CCS, in the pathophysiology of cancer is not well defined. We found that ATOX1 was significantly overexpressed in human blood, breast, and skin cancer samples, while CCS was significantly altered in human brain, liver, ovarian, and prostate cancer when compared to normal tissue.

View Article and Find Full Text PDF