Publications by authors named "Donini S"

Extracorporeal therapies could be required for treatment of life-threatening severe acute intoxication. We present the case of an 82-year-old patient admitted to our Nephrology Unit because of metformin-associated lactic acidosis (MALA) and acute kidney injury (AKI stage III AKIN criteria). The patient also presented severe intoxication of digoxin and apixaban.

View Article and Find Full Text PDF

Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling.

View Article and Find Full Text PDF

Fructosyl peptide oxidases (FPOXs) are enzymes currently used in enzymatic assays to measure the concentration of glycated hemoglobin and albumin in blood samples, which serve as biomarkers of diabetes. However, since FPOX are unable to work directly on glycated proteins, current enzymatic assays are based on a preliminary proteolytic digestion of the target proteins. Herein, to improve the speed and costs of the enzymatic assays for diabetes testing, we applied a rational design approach to engineer a novel enzyme with a wider access tunnel to the catalytic site, using a combination of Rosetta design and molecular dynamics simulations.

View Article and Find Full Text PDF

The colour purity and versatility of fabrication of one-dimensional photonic crystals (1D PhCs) make them ideal candidates for colorimetric sensing of a variety of analytes. For instance, the detection of bacterial contaminants in food via colorimetric sensors can be highly appealing, as most of the existing detection techniques are in general time-consuming and the read-out requires specialised personnel. Here, we present a colorimetric sensor based on hybrid plasmonic/photonic 1D crystals.

View Article and Find Full Text PDF

Human O-phosphoethanolamine phospho-lyase (hEtnppl; EC 4.2.3.

View Article and Find Full Text PDF

Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE).

View Article and Find Full Text PDF

A major problem of current biomedical implants is the bacterial colonization and subsequent biofilm formation, which seriously affects their functioning and can lead to serious post-surgical complications. Intensive efforts have been directed toward the development of novel technologies that can prevent bacterial colonization while requiring minimal antibiotics doses. To this end, biocompatible materials with intrinsic antifouling capabilities are in high demand.

View Article and Find Full Text PDF

A current challenge in materials science and biotechnology is to express a specific and controlled functionality on the large interfacial area of a nanostructured material to create smart biohybrid systems for targeted applications. Here, we report on a biohybrid system featuring poly(vinyl alcohol) as the supporting synthetic polymer and bovine serum albumin as the biofunctional element. The optimal processing conditions to produce these self-standing composite membranes are determined, and the composition and distribution of the bioactive agent within the polymeric matrices are analyzed.

View Article and Find Full Text PDF

Photonic crystal-based biosensors hold great promise as low-cost devices for real-time monitoring of a variety of biotargets, for example, bacterial contaminants in food. Here, we report the proof-of-concept for a new colorimetric sensor of bacterial contamination, which is based on a novel hybrid plasmonic-photonic device. Our system consists of a layer of silver, a plasmonic metal exhibiting a well-known bioactivity, on top of a one-dimensional photonic crystal.

View Article and Find Full Text PDF

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators.

View Article and Find Full Text PDF

Tuberculosis (TB) is a major infectious disease associated increasingly with drug resistance. Thus, new anti-tubercular agents with novel mechanisms of action are urgently required for the treatment of drug-resistant TB. In prior work, we identified compound 1 (cyclohexyl(4-(isoquinolin-5-ylsulfonyl)piperazin-1-yl)methanone) and showed that its anti-tubercular activity is attributable to inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) in Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone.

View Article and Find Full Text PDF

Amadoriases are a class of FAD-dependent enzymes that are found in fungi, yeast and bacteria and that are able to hydrolyze glycated amino acids, cleaving the sugar moiety from the amino acidic portion. So far, engineered Amadoriases have mostly found practical application in the measurement of the concentration of glycated albumin in blood samples. However, these engineered forms of Amadoriases show relatively low absolute activity and stability levels, which affect their conditions of use.

View Article and Find Full Text PDF

The catalytic properties of some selected enzymes have long been exploited to carry out efficient and cost-effective bioconversions in a multitude of research and industrial sectors, such as food, health, cosmetics, agriculture, chemistry, energy, and others. Nonetheless, for several applications, naturally occurring enzymes are not considered to be viable options owing to their limited stability in the required working conditions. Over the years, the quest for novel enzymes with actual potential for biotechnological applications has involved various complementary approaches such as mining enzyme variants from organisms living in extreme conditions (extremophiles), mimicking evolution in the laboratory to develop more stable enzyme variants, and more recently, using rational, computer-assisted enzyme engineering strategies.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis orotate phosphoribosyltransferase (MtOPRT) catalyses the conversion of α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and orotate (OA) in pyrophosphate and orotidine 5'-monophosphate (OMP), in presence of Mg. This enzyme is the only responsible for the synthesis of orotidine 5'-monophosphate, a key precursor in the de novo pyrimidine biosynthesis pathway, making MtOPRT an attractive drug target for the development of antitubercular agents. We report the crystal structures of MtOPRT in complex with PRPP (2.

View Article and Find Full Text PDF

Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M.

View Article and Find Full Text PDF

The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target.

View Article and Find Full Text PDF

VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a K of 100 nM and is uncompetitive with respect to IMP and NAD.

View Article and Find Full Text PDF

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH).

View Article and Find Full Text PDF

Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site.

View Article and Find Full Text PDF

Dysregulated expression of the AGXT2L1 gene has been associated to neuropsychiatric disorders. Recently the gene product was shown to possess O-phosphoethanolamine phospho-lyase activity. We here analyze the specificity of AGXT2L1 in terms of both reaction and substrate.

View Article and Find Full Text PDF

PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor.

View Article and Find Full Text PDF

RNA-cleaving deoxyribozymes can be used for the sequence-specific knockdown of mRNAs. It was previously shown that activity of these deoxyribozymes is enhanced when their substrate-binding arms include some locked nucleic acid (LNA) residues, but the mechanistic basis of this enhancement was not explored. Here we dissected the kinetics and thermodynamics underlying the reaction of LNA-containing 8-17 deoxyribozymes.

View Article and Find Full Text PDF

The genomes of several vertebrates contain two genes encoding proteins highly similar to threonine synthase (TS), even though the biosynthesis of l-threonine (l-Thr) is not known to occur in these animals. We report a bioinformatic analysis of the two TS-like genes, the recombinant expression of one murine TS homolog (mTSH2) and its initial biochemical characterization. Recombinant mTSH2 contained bound pyridoxal-5'-phosphate (PLP), but did not synthesize l-Thr.

View Article and Find Full Text PDF

The ARS Component B gene (EMBL ID: HSARS81S, AC: X99977) encodes a 9 kD non-glycosylated polypeptide (also known as SLURP-1, SwissProt/TrEMBL: P55000), a soluble member of the human Ly6/uPAR superfamily. ARS Component B gene mutations have been implicated in Mal de Meleda. In this study we show by immunohistochemistry that SLURP-1 (secreted Ly-6/uPAR related protein, the protein product of the ARS Component B gene) is localized to human skin, exocervix, gums, stomach and esophagus.

View Article and Find Full Text PDF