Based on small-world network theory, we have developed a brain-inspired photonic reservoir computing (RC) network system utilizing quantum dot spin-vertical-cavity surface-emitting lasers (QD spin-VCSELs) and formulated a comprehensive theoretical model for it. This innovative network system comprises input layers, a reservoir network layer, and output layers. The reservoir network layer features four distinct reservoir modules that are asymmetrically coupled.
View Article and Find Full Text PDFIn this work, based on two parallel reservoir computers realized by the two polarization components of the optically pumped spin-VCSEL with double optical feedbacks, we propose the fusion-prediction scheme for the Mackey-Glass (MG) and Lorenz (LZ) chaotic time series. Here, the direct prediction and iterative prediction results are fused in a weighted average way. Compared with the direct-prediction errors, the fusion-prediction errors appear great decrease.
View Article and Find Full Text PDFIn this work, we propose a chaotic secure communication system with optical time division multiplexing (OTDM), using two cascaded reservoir computing systems based on multi beams of chaotic polarization components emitted by four optically pumped VCSELs. Here, each level of reservoir layer includes four parallel reservoirs, and each parallel reservoir contains two sub-reservoirs. When the reservoirs in the first-level reservoir layer are well trained and the training errors are far less than 0.
View Article and Find Full Text PDFIn this work, with the mixing fractions being known in advance or unknown, the schemes and theories for the separations of two groups of the mixed optical chaotic signals are proposed in detail, using the VCSEL-based reservoir computing (RC) systems. Here, two groups of the mixed optical chaotic signals are linearly combined with many beams of the chaotic x-polarization components (X-PCs) and Y-PCs emitted by the optically pumped spin-VCSELs operation alone. Two parallel reservoirs are performed by using the chaotic X-PC and Y-PC output by the optically pumped spin-VCSEL with both optical feedback and optical injection.
View Article and Find Full Text PDFIn this work, we utilize two cascade coupling modes (unidirectional coupling and bidirectional coupling) to construct a four-layer deep reservoir computing (RC) system based on the cascade coupled optically-pumped spin-VCSEL. In such a system, there are double sub-reservoirs in each layer, which are formed by the chaotic x-PC and y-PC emitted by the reservoir spin-VCSEL in each layer. Under these two coupling modes, the chaotic x-PC and y-PC emitted by the driving optically-pumped spin-VCSEL (D-Spin-VCSEL), as two learning targets, are predicted by utilizing the four-layer reservoirs.
View Article and Find Full Text PDFWe present a novel scheme for the detections of the position-vectors of the multi targets distributed in a circular space using multi channels of the probe chaotic waves emitted by the asymmetric coupling semiconductor lasers network (ACSLN), where these probe waves possess the attractive features of the time-space uncorrelation and wide bandwidth. Using these features, the accurate measurement for the position-vectors of the multi targets can be achieved by correlating the multi channels of the probe waves with their corresponding reference waves. The further research results show that the detections for the position-vectors of the multi targets possess very low relative errors that are no more than 0.
View Article and Find Full Text PDFFlexible pressure sensors still face difficulties achieving a constantly adaptable micronanostructure of substrate materials. Interlinked microcone resistive sensors were fabricated by polydimethylsiloxane (PDMS) nanocone array. PDMS nanocone array was achieved by the second transferring tapered polymethyl methacrylate (PMMA) structure.
View Article and Find Full Text PDFResistive pressure sensors are appealing due to having several advantages, such as simple reading mechanisms, simple construction, and quick dynamic response. Achieving a constantly changeable microstructure of sensing materials is critical for the flexible pressure sensor and remains a difficulty. Herein, a flexible, tunable resistive pressure sensors is developed via simple, low-cost microsphere self-assembly and graphene/carbon nanotubes (CNTs) solution drop coating.
View Article and Find Full Text PDFWe present a novel scheme for the accurate ranging for the multi-region in the rectangular-shape target using numbers of the chaotic x polarization components in the multiple parallel optically pumped spin-VCSELs with optical injection, where these chaotic x polarization components possess the attractive features of the uncorrelation in time and space under different optical injection strengths, and fast dynamic with femtosecond magnitude. Utilizing these features, the accurate ranging to the position vectors of the multi-region targets can be achieved by correlating the multi beams of the time-delay reflected chaotic polarization radar probe waveforms with their corresponding reference waveforms. The further investigations show that the ranging to the multi-region targets possesses very low relative error, which is less than 0.
View Article and Find Full Text PDFIn this work, we utilize three parallel optical reservoir computers to model three optical dynamic systems, respectively. Here, the three laser-elements in the response laser array with both delay-time feedback and optical injection are utilized as nonlinear nodes to realize three optical chaotic reservoir computers (RCs). The nonlinear dynamics of three laser-elements in the driving laser array are predictively learned by these three parallel RCs.
View Article and Find Full Text PDFWe have developed a theory model for a three-element laser array where three lasers are laterally coupled using the coupled mode theory and Maxwell equations. New chaotic synchronization properties have been observed systematically in the master-slave configuration, consisting of the driving three-element laser array with self-feedback and the response three-element laser array subjected to the parallel injection or cross injection. Under the parallel injection, the dynamic evolutions of high-quality complete chaotic synchronization between laser elements in different parameter spaces seriously depend on the self-feedback mode of the driving laser elements, such as one, two and all of them with self-feedback.
View Article and Find Full Text PDFWe investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability and injection strength in the vertical-cavity surface-emitting laser (VCSEL) with polarization-preserved optical injection. We explore a new threshold mechanism to judge two logic outputs encoded in different dynamic behaviors of the x-PC and y-PC emitted by the VCSEL with polarization-preserved optical injection. We demonstrate implementations of two parallel optical chaotic reset-set flip-flop operations and two parallel chaotic toggle flip-flop operations that are synchronized by a clock signal and response for as short as 1 ns bit time.
View Article and Find Full Text PDFWe investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability, frequency detuning and injection strength in the vertical cavity surface emitting laser with optical injection. Specifically, by encoding two logic inputs and one clock input in the amplitude of the light from a sampled grating distributed Bragg reflector laser, and by decoding two output logic responses from the x-PC and y-PC emitted by the laser, we demonstrate two parallel data-selection computing. The correct logic output encoded in two emitted PCs response for as short as 100 ps bit time and the response bit time of the correct logic output encoded in the y-PC may be 67 ps by the optimization of the injection strength.
View Article and Find Full Text PDFWe propose a novel scheme of the real-time ranging for the six orientational targets based on the vertical cavity surface-emitting laser (VCSEL) network with three nodes. In the scheme, we explore a method to realize the globally complete chaotic synchronization (GCCS) of the network with different channel delays. Under the GCCS, we use the six chaotic polarization radars for the ranging of the six orientational targets based on Hilbert transform theory.
View Article and Find Full Text PDFAccording to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized.
View Article and Find Full Text PDFA number of erratums are presented to correct the inadvertent typing mistakes in our paper.
View Article and Find Full Text PDFBased on the polarization switching mechanism in an optically injected vertical cavity surface emitting laser (VCSEL), and the new electro-optic modulation theory, we propose a novel approach to implement optoelectric logic gates. Here, the two linearly polarized lights from the output of the laser are considered as two logic outputs. Under the electro-optic modulation, one of the logic outputs is the NOT operation with the other one.
View Article and Find Full Text PDFWe theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120 nm, are demonstrated.
View Article and Find Full Text PDF