The combination of biodegradable polymers and bioactive inorganic materials is a promising method to mimic native tissue in bone regeneration. Toward this direction, electrospun fibrous scaffolds were successfully fabricated in the silk fibroin (SF) matrix containing new bioceramics on the basis of mesoporous bioactive glass/hydroxyapatite nanocomposite (MGHA). The physicochemical properties and surface hydrophilicity of these biphasic composite could be tailored by the addition of MGHA content.
View Article and Find Full Text PDFThe features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation.
View Article and Find Full Text PDFFabricating bioactive nanofibrous scaffolds from biodegradable polymers to mimic native tissue is an important approach in repairing bony defects. Silk fibroin (SF) may contribute to bone regeneration because of its excellent mechanical properties, slow degradability, and low osteoconductivity. A combination of bioceramic-polymer materials is generally used to provide an improved osteoconductive environment for bone healing.
View Article and Find Full Text PDF