Background: 5-Fluorouracil (5-FU) is a common chemotherapeutic medication used to treat cancer. However, the intestinal tract may sustain oxidative damage as a result.
Objectives: The purpose of this study was to clarify the underlying molecular mechanisms and examine the preventive benefits of cereal-based fermented drinks (CFBs) against intestinal injury in mice caused by 5-FU.
Proc Natl Acad Sci U S A
December 2023
The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms.
View Article and Find Full Text PDFAt least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release.
View Article and Find Full Text PDFBiomed Res Int
December 2019
Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, and models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively.
View Article and Find Full Text PDFThis study tested the hypothesis that CD44 is involved in the development of cardiac fibrosis via angiotensin II (Ang II) AT1 receptor-stimulated TNFα/NFκB/IκB signaling pathways. Study was conducted in C57BL/6 wild type and CD44 knockout mice subjected to Ang II infusion (1,000 ng/kg/min) using osmotic minipumps up to 4 weeks or with gastric gavage administration of the AT1 receptor blocker, telmisartan at a dose of 10 mg/kg/d. Results indicated that Ang II enhances expression of the AT1 receptor, TNFα, NFκB, and CD44 as well as downregulates IκB.
View Article and Find Full Text PDFAn easier method for constructing the hierarchical micro-/nano-structures on the surface of dental implants in the clinic is needed. In this study, three different titanium surfaces with microscale grooves (width 0.5-1, 1-1.
View Article and Find Full Text PDFRecent studies have shown that myocardial ischemia/reperfusion (I/R)-induced necrosis can be controlled by multiple genes. In this study, we observed that both strands (5p and 3p) of miR-223 were remarkably dysregulated in mouse hearts upon I/R. Precursor miR-223 (pre-miR-223) transgenic mouse hearts exhibited better recovery of contractile performance over reperfusion period and lesser degree of myocardial necrosis than wild type hearts upon ex vivo and in vivo myocardial ischemia.
View Article and Find Full Text PDFDecreased heat shock protein (Hsp) expression in type 1 and type 2 diabetes has been implicated as a primary factor contributing to diabetes-induced organ damage. We recently showed that diabetic cardiomyocytes could release detrimental exosomes, which contain lower levels of Hsp20 than normal ones. To investigate whether such detrimental exosomes could be modified in cardiomyocytes by raising Hsp20 levels to become protective, we used a transgenic (TG) mouse model with cardiac-specific overexpression of Hsp20.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been shown to elicit cardio-protective effects in sepsis. However, the underlying mechanism remains obscure. While recent studies have indicated that miR-223 is highly enriched in MSC-derived exosomes, whether exosomal miR-223 contributes to MSC-mediated cardio-protection in sepsis is unknown.
View Article and Find Full Text PDFSepsis is an infection-induced severe inflammatory disorder that leads to multiple organ failure. Amongst organs affected, myocardial depression is believed to be a major contributor to septic death. While it has been identified that large amounts of circulating pro-inflammatory cytokines are culprit for triggering cardiac dysfunction in sepsis, the underlying mechanisms remain obscure.
View Article and Find Full Text PDF