Publications by authors named "Dongze Lian"

Video Anomaly detection in videos refers to the identification of events that do not conform to expected behavior. However, almost all existing methods cast this problem as the minimization of reconstruction errors of training data including only normal events, which may lead to self-reconstruction and cannot guarantee a larger reconstruction error for an abnormal event. In this paper, we propose to formulate the video anomaly detection problem within a regime of video prediction.

View Article and Find Full Text PDF

To simultaneously estimate the number of heads and locate heads with bounding boxes, we resort to detection-based crowd counting by leveraging RGB-D data and design a dual-path guided detection network (DPDNet). Specifically, to improve the performance of detection-based approaches for dense/tiny heads, we propose a density map guided detection module, which leverages density map to improve the head/non-head classification in detection network where the density implies the probability of a pixel being a head, and a depth-adaptive kernel that considers the variances in head sizes is also introduced to generate high-fidelity density map for more robust density map regression. In order to prevent dense heads from being filtered out during post-processing, we utilize such a density map for post-processing of head detection and propose a density map guided NMS strategy.

View Article and Find Full Text PDF

This paper presents an anomaly detection method that is based on a sparse coding inspired Deep Neural Networks (DNN). Specifically, in light of the success of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding (TSC), where a temporally-coherent term is used to preserve the similarity between two similar frames. The optimization of sparse coefficients in TSC with the Sequential Iterative Soft-Thresholding Algorithm (SIATA) is equivalent to a special stacked Recurrent Neural Networks (sRNN) architecture.

View Article and Find Full Text PDF

Inspired by the pioneering work of the information bottleneck (IB) principle for Deep Neural Networks' (DNNs) analysis, we thoroughly study the relationship among the model accuracy, I ( X ; T ) and I ( T ; Y ) , where I ( X ; T ) and I ( T ; Y ) are the mutual information of DNN's output with input and label . Then, we design an information plane-based framework to evaluate the capability of DNNs (including CNNs) for image classification. Instead of each hidden layer's output, our framework focuses on the model output .

View Article and Find Full Text PDF

Gaze estimation, which aims to predict gaze points with given eye images, is an important task in computer vision because of its applications in human visual attention understanding. Many existing methods are based on a single camera, and most of them only focus on either the gaze point estimation or gaze direction estimation. In this paper, we propose a novel multitask method for the gaze point estimation using multiview cameras.

View Article and Find Full Text PDF