Publications by authors named "Dongyuan Lu"

Background: Liver organoid serves as an alternative model for liver pathophysiology in carbohydrate or lipid metabolism and xenobiotic metabolism transformation. Biomechanical cues including spaceflight mission can affect liver organoid construction and their related functions, but their underlying mechanisms are not fully understood yet. Here, a rotating cell culture device, namely Rotating Flat Chamber (RFC), was specifically designed for adhering cells or cell aggregated to elucidate the effects of altered gravity vector on HepaRG-derived liver organoids construction.

View Article and Find Full Text PDF

Background And Aims: Partial hepatectomy-induced liver regeneration causes the increase in relative blood flow rate within the liver, which dilates hepatic sinusoids and applies mechanical stretch on liver sinusoidal endothelial cells (LSECs). Heparin-binding EGF-like growth factor is a crucial growth factor during liver regeneration. We aimed to investigate whether this sinusoidal dilation-induced stretch promotes HB-EGF secretion in LSECs and what the related molecular mechanism is.

View Article and Find Full Text PDF

Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs.

View Article and Find Full Text PDF

Background & Aims: Liver paracrine signaling from liver sinusoid endothelial cells to hepatocytes in response to mechanical stimuli is crucial in highly coordinated liver regeneration. Interstitial flow through the fenestrated endothelium inside the space of Disse potentiates the role of direct exposure of hepatocytes to fluid flow in the immediate regenerative responses after partial hepatectomy, but the underlying mechanisms remain unclear.

Methods: Mouse liver perfusion was used to identify the effects of interstitial flow on hepatocyte proliferation .

View Article and Find Full Text PDF

The liver is a complicated organ within the body that performs wide-ranging and vital functions and also has a unique regenerative capacity after hepatic tissue injury and cell loss. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models including partial hepatectomy (PHx) reveal that extracellular and intracellular signaling pathways can help the liver recover to its equivalent size and weight prior to an injury.

View Article and Find Full Text PDF

The purpose of this study is to establish and validate a sensitive, robust and rapid liquid chromatography-tandem mass spectrometry method for quantifying the aescinate A and aescinate B in human plasma and assessing the association of phlebitis and aescinate A and aescinate B in vivo exposure. The chromatographic separation was completed on Agilent ZORBAX SB-C (2.1 mm × 100 mm, 3.

View Article and Find Full Text PDF

Depression is a mental health disorder characterized by chronic negative mood, and depression has become a major threat to human health and quality of life. Anyupeibo capsule, a fifth-class new Chinese medicine, was prepared with extracts of Piper laetispicum C.DC.

View Article and Find Full Text PDF

Distinct physical factors originating from the cellular microenvironment are crucial to the biological homeostasis of stem cells. While substrate stiffness and orientation are known to regulate the mechanical remodeling and fate decision of mesenchymal stem cells (MSCs) separately, it remains unclear how the two factors are combined to manipulate their mechanical stability under gravity vector. Here we quantified these combined effects by placing rat MSCs onto stiffness-varied poly-dimethylsiloxane (PDMS) substrates in upward (180°), downward (0°), or edge-on (90°) orientation.

View Article and Find Full Text PDF

Mechanical or physical cues are associated with the growth and differentiation of embryonic stem cells (ESCs). While the substrate stiffness or topography independently affects the differentiation of ESCs, their cooperative regulation on lineage-specific differentiation remains largely unknown. Here, four topographical configurations on stiff or soft polyacrylamide hydrogel were combined to direct hepatic differentiation of human H1 cells via a four-stage protocol, and the coupled impacts of stiffness and topography were quantified at distinct stages.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of mechanical stimuli, i.

View Article and Find Full Text PDF

Background: Distinct mechanical stimuli are known to manipulate the behaviors of embryonic stem cells (ESCs). Fundamental rationale of how ESCs respond to mechanical forces and the potential biological effects remain elusive. Here we conducted the mechanobiological study for hESCs upon mechanomics analysis to unravel typical mechanosensitive processes on hESC-specific fluid shear.

View Article and Find Full Text PDF

Pathophysiological changes of astronauts under space microgravity involve complex factors and require an integrative perspective to fully understand the mechanisms. The readouts from space cell biology experiments strongly depend on the hardware and especially the cell bioreactor that is used in distinct spacecraft. Herein, a specialized cell culture bioreactor is designed for culturing mammalian cells on board the SJ-10 satellite.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into functional hepatocytelike cells, which are expected to serve as a potential cell source in regenerative medicine, tissue engineering, and clinical treatment of liver injury. Little is known about whether and how space microgravity is able to direct the hepatogenic differentiation of BMSCs in the actual space microenvironment. In this study, we examined the effects of space microgravity on BMSC hepatogenic differentiation on board the SJ-10 Recoverable Scientific Satellite.

View Article and Find Full Text PDF

It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression.

View Article and Find Full Text PDF

Endothelial cells (ECs) are mechanosensitive cells undergoing morphological and functional changes in space. Ground-based study has provided a body of evidences about how ECs can respond to the effect of simulated microgravity, however, these results need to be confirmed by spaceflight experiments in real microgravity. In this work, we cultured EA.

View Article and Find Full Text PDF

To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-β-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC).

View Article and Find Full Text PDF

The aim of the present study was to explore sunitinib-induced autophagic effects and the specific molecular mechanisms involved, , using PC-3 and LNCaP human prostate cancer cell lines. Cells were exposed to escalating doses of sunitinib treatment and subsequent cell viability and cell cycle analyses were performed to evaluate the inhibitory effect of sunitinib . Immunofluorescence staining of microtubule associated protein 1A/1B-light chain 3 (LC3) puncta was employed to assess autophagy levels after sunitinib treatment.

View Article and Find Full Text PDF

Background: Keratinocyte (KC) migration in re-epithelization is crucial in repairing injured skin. But the mechanisms of how mechanical stimuli regulate the migration of keratinocytes have been poorly understood.

Methods: Human immortalized keratinocyte HaCaT cells were co-cultured with skin fibroblasts on PDMS membranes and transferred to the static stretch device developed in-house for additional 6 day culture under mechanical stretch to mimic surface tension in skin.

View Article and Find Full Text PDF

Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords.

View Article and Find Full Text PDF

Wound healing is a complicated but highly organized process in which cell migration and proliferation are actively involved. However, the process by which mechanical stretch regulates the proliferation and migration of human skin fibroblasts (HFs) and keratinocytes is poorly understood. Using a house built mechanical stretch device, we examined the HFs extracellular matrix (ECM) components changes under non-stretch, static stretch or cyclic stretch conditions.

View Article and Find Full Text PDF

Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however, the transduction efficiency remains very low. Although existing evidence revealed the type, size, and zeta potential of vector affect gene transfection efficiency in cells, the systematic study in hESCs is scarce. In this study, using poly(amidoamine) (PAMAM) dendrimers ended with amine, hydroxyl, or carboxyl as model, we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection.

View Article and Find Full Text PDF

Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE).

View Article and Find Full Text PDF

Mechanical load and postmenopausal hypoestrogen are risk factors for pelvic organ prolapse (POP). In this study, we applied a 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10⁻⁸ M 17-β-estradiol to vaginal fibroblasts isolated from postmenopausal women with or without POP to investigate the effects of CS and estrogen on cell morphology and cytoskeletons of normal and POP fibroblasts.

View Article and Find Full Text PDF

Cells sense various in vivo mechanical stimuli, which initiate downstream signaling to mechanical forces. While a body of evidences is presented on the impact of limited mechanical regulators in past decades, the mechanisms how biomechanical responses globally affect cell function need to be addressed. Complexity and diversity of in vivo mechanical clues present distinct patterns of shear flow, tensile stretch, or mechanical compression with various parametric combination of its magnitude, duration, or frequency.

View Article and Find Full Text PDF