Publications by authors named "Dongyi Li"

Developing highly efficient bimetallic metal-organic frameworks (MOFs) as catalysts for Fenton-like reactions holds significant promise for decontamination processes. Although MOFs with excellent decontamination capabilities are achievable, ensuring their long-term stability, especially in the organoarsenic harmless treatment, remains a formidable challenge. Herein, we proposed a unique nanoconfinement strategy using graphene oxide (GO)-supported Prussian blue analogs (PBA) as catalytic membrane, which modulated the peroxymonosulfate (PMS) activation in p-arsanilic acid (p-ASA) degradation from traditional radical pathways to a synergy of both radical and non-radical pathways.

View Article and Find Full Text PDF

Background: Characterized by an immune-suppressive tumor microenvironment (TME), pancreatic ductal adenocarcinoma (PDAC) is well-known for its poor prognosis. Tumor associated macrophages (TAMs) play a critical role in PDAC TME. An in-depth understanding of TAMs is helpful to develop new strategies for immunotherapy.

View Article and Find Full Text PDF

Magnetite (FeO) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (FeO@C) were developed.

View Article and Find Full Text PDF

This paper studies a multi-hydraulic system (MHS) synchronization control algorithm. Firstly, a general nonlinear asymmetric MHS state space entirety model is established and subsequently the model form is simplified by nonlinear feedback linearization. Secondly, an entirety model-type solution is proposed, integrating a nonlinear model predictive control (NMPC) algorithm with a cross-coupling control (CCC) algorithm.

View Article and Find Full Text PDF

Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO-N and NH-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6).

View Article and Find Full Text PDF

A pilot-scale carbon fibers enhanced ecological floating beds (CF-EFBs) was constructed. Compared to EFBs without carbon fibers enhancement, CF-EFBs have the better removal of total inorganic nitrogen (TIN), total phosphorus (TP), and chemical oxygen demand (COD), the removal efficiencies were 3.19, 3.

View Article and Find Full Text PDF
Article Synopsis
  • The field experiment aimed to understand how different groundwater depths (1m to 4m) affect groundwater recharge rates and soybean growth from 2021 to 2022.
  • The findings revealed that deeper groundwater levels significantly reduced recharge and irrigation needs, with the 1m depth treatment promoting optimal growth rates and yield in soybeans compared to the deeper levels.
  • Overall, the study indicated that shallower groundwater depths were more beneficial for soybean growth and yield, highlighting important links between water management and crop performance.
View Article and Find Full Text PDF

Utilizing artificial photosynthesis for the conversion of CO into value-added fuels has been recognized as a promising strategy for the ever-increasing energy crisis and the greenhouse effect. Herein, the element doping engineering of red spherical g-CN having oxygen bonded with compositional carbon (C-O-C) for CO photoreduction has been explored to address this challenge. The C-O bond was formed by hydrothermal treatment with dicyandiamide and 1,3,5-trichlorotriazine.

View Article and Find Full Text PDF

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.

View Article and Find Full Text PDF

ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation.

View Article and Find Full Text PDF

The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases.

View Article and Find Full Text PDF

Microbiological polyhydroxyalkanoates (PHAs) are rooted as the most promising bio-replacements of synthetic polymers. Inherent properties of these PHAs further expand their applicability in numerous industrial, environmental, and clinical sectors. To propel these, a new environmental, endotoxin free gram-positive bacterium i.

View Article and Find Full Text PDF

Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis.

View Article and Find Full Text PDF

Anaerobic digestion (AD) has emerged as a promising technology for diverting the organic waste from the landfills along with the production of clean energy. AD is a microbial-driven biochemical process wherein the plethora of microbial communities participate in converting the putrescible organic matter into biogas. Nevertheless, the AD process is susceptible to the external environmental factors such as presence of physical (microplastics) and chemical (antibiotics, pesticides) pollutants.

View Article and Find Full Text PDF

Recycling urban tail water for ecological base flow and landscape use offers a reliable solution for the problem of water resource shortage. But the long-term direct discharge of urban tail water can aggravate the eutrophication of surface water based on the present drainage standard of sewage plant. It is of great significance to develop low-cost and low-energy ecological technologies as transitional region between urban tail water and surface water.

View Article and Find Full Text PDF

Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics.

View Article and Find Full Text PDF

Anaerobic digestion is considered an environmentally benign process for the recycling of food waste into biogas. However, unscientific disposal of ammonium-rich food waste digestate (FWD), a by-product of anaerobic digestion induces environmental issues such as odor nuisances, water pollution, phytotoxicity and pathogen transformations in soil, etc. In the present study, FWD produced from anaerobic digestion of source-separated food waste from markets and industries was used for converting FWD into biofertilizer using 20-L bench scale composters.

View Article and Find Full Text PDF

Chinese medicinal herbal residues (CMHRs) are known for their antipathogenic properties due to the presence of bioactive compounds. Hence, CMHRs could be used as a potential resource to produce biofertilizer with antipathogenic properties for agricultural applications. In this study, a novel approach was used by utilizing the waste-derived biofertilizer, i.

View Article and Find Full Text PDF

As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens.

View Article and Find Full Text PDF

This work reported a new waste functionalization and utilization method, which use digestate to prepare hydrochar to improve methane production from food waste (FW) and sewage sludge (SS). Experimental results presented that 10 g/L hydrochar obtained the cumulative methane production of 133.11 ± 1.

View Article and Find Full Text PDF

Composting of food waste digestate (FWD) is challenging as it requires more bulking agents, and the nitrogen loss is inevitable. To address these issues, FWD composting was conducted at a relatively lower C/N ratio of 15 with zeolite amendment in the dosage range of 5-15%. The impact of zeolite addition on nitrogen loss, NH and NO emissions was assessed during FWD composting.

View Article and Find Full Text PDF

Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli.

View Article and Find Full Text PDF

Background: is a type of soft tissue sarcoma, the histologic origin and differentiation direction of which are still unclear. There are few treatment options for other than surgery. Herein we describe a patient who had multiple recurrences of postoperatively, but R0 resection was achieved by local hyperthermia combined with chemotherapy, thus providing a new treatment approach for similar situations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneb8biode53elq9sm6nm6kk91sku24ii3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once