Publications by authors named "Dongyang Xiao"

Arid zone grassland is a crucial component of terrestrial ecosystems and plays a significant role in ecosystem protection and soil erosion prevention. However, accurately mapping grassland spatial information in arid zones presents a great challenge. The accuracy of remote sensing grassland mapping in arid zones is affected by spectral variability caused by the highly diverse landscapes.

View Article and Find Full Text PDF

The gate-type carbon nanotubes cathodes exhibit advantages in long-term stable emission owing to the uniformity of electrical field on the carbon nanotubes, but the gate inevitably reduces the transmittance of electron beam, posing challenges for system stabilities. In this work, we introduce electron beam focusing technique using the self-charging SiN/Au/Si gate. The potential of SiN is measured to be approximately -60 V quickly after the cathode turning on, the negative potential can be maintained as the emission goes on.

View Article and Find Full Text PDF

Microplastic pollution has become an environmental problem that cannot be ignored in our society. Raman spectroscopy technology has been widely used in the field of microplastics detection due to its non-contact, non-destructive chemical specificity. Traditional point confocal Raman micro-spectroscopy technology uses single-point detection, resulting in long measurement times to scan the large areas of interest of typical samples.

View Article and Find Full Text PDF

The value of ecosystem services is an extremely important parameter that reflects regional ecological benefits and resources. Estimating the value of ecosystem services is essential for regional land-use optimization, ecological construction, and biodiversity protection. In this study, Landsat-TM/ETM remote sensing images were used to analyze land-use data in 1990, 2000, 2010, and 2020 of the Yellow River Basin (Henan section), China, defined by natural boundaries.

View Article and Find Full Text PDF

The changes and interrelationships of ecosystem services at different global and regional scales have been actively investigated. Clarifying the trade-offs and synergies between ecosystem services from a multi-scale scientific perspective is vital to improve the coordinated and sustainable development of the watershed and ecological protection. As an important ecological barrier region of the Yellow River Basin, the Henan section provides a variety of important ecosystem services.

View Article and Find Full Text PDF

Spiking neural P systems (SN P systems), inspired by biological neurons, are introduced as symbolical neural-like computing models that encode information with multisets of symbolized spikes in neurons and process information by using spike-based rewriting rules. Inspired by neuronal activities affected by enzymes, a numerical variant of SN P systems called enzymatic numerical spiking neural P systems (ENSNP systems) is proposed wherein each neuron has a set of variables with real values and a set of enzymatic activation-production spiking rules, and each synapse has an assigned weight. By using spiking rules, ENSNP systems can directly implement mathematical methods based on real numbers and continuous functions.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) with superior thermal and electrochemical properties are desirable for a large variety of applications. Herein, an synthesis carried out at 1050 °C is proposed for the realization of titanium carbide (TiC) modified CNTs (TiC@CNTs) a carbothermal treatment of the TiO-coated CNTs deposited by a TALD technology, preserving the structural morphologies of CNT samples. Crystalline and amorphous TiC layers/nanoparticles are observed around the walls of CNTs, serving as a thermal insulation layer to enhance the thermal stability of CNTs.

View Article and Find Full Text PDF

Three-dimensional (3D) micro-supercapacitors (MSCs) with superior performances are desirable for miniaturized electronic devices. 3D interdigitated MSCs fabricated by bulk micromachining technologies have been demonstrated for silicon wafers. However, rational design and fabrication technologies of 3D architectures still need to be optimized within a limited footprint area to improve the electrochemical performances of MSCs.

View Article and Find Full Text PDF

The significant spatial heterogeneity among river basin ecosystems makes it difficult for local governments to carry out comprehensive governance for different river basins in a special administrative region spanning multi-river basins. However, there are few studies on the construction of a comprehensive governance mechanism for multi-river basins at the provincial level. To fill this gap, this paper took Henan Province of China, which straddles four river basins, as the study region.

View Article and Find Full Text PDF

The large-scale fabrication of high-performance on-chip micro-supercapacitors (MSCs) is the footstone for the development of next-generation miniaturized electronic devices. In practical applications, however, MSCs may suffer from a low areal energy density as well as a complicated fabrication strategy that is incompatible with semiconductor processing technology. Herein, we propose a scalable fabrication strategy for the realization of a silicon-based three-dimensional (3D) all-solid-state MSC via the combination of semiconductor-based electrode processing, chemical vapor deposition, and hydrothermal growth.

View Article and Find Full Text PDF

Ultra-wideband absorbers have been extensively used in wireless communications, energy harvesting, and stealth applications. Herein, with the combination of experimental and theoretical analyses, we develop a flexible ultra-wideband terahertz absorber based on vertically aligned carbon nanotubes (VACNTs). Measured results show that the proposed absorber is able to work efficiently within the entire THz region (e.

View Article and Find Full Text PDF

Nanostructured metal-based compound electrodes with excellent electrochemical activity and electrical conductivity are promising for high-performance energy storage applications. In this paper, we report an asymmetric supercapacitor based on Ti and Cu coated vertical-aligned carbon nanotube electrodes on carbon cloth. The active material is achieved by functionalization using a high-temperature annealing process.

View Article and Find Full Text PDF

Superhydrophobic substrate is applied in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) detection due to its confinement effect. The weak interaction of superhydrophobic surface with water/salts makes it potential in one-step enrichment and desalting of peptide in MALDI MS analysis. We fabricate a superhydrophobic substrate by spin-coating poly(dimethyl siloxane) (PDMS) on a candle soot layer.

View Article and Find Full Text PDF

The performance of surface-enhanced Raman scattering (SERS) for detecting trace amounts of analytes depends highly on the enrichment of the diluted analytes into a small region that can be detected. A super-hydrophobic delivery (SHD) process is an excellent process to enrich even femtomolar analytes for SERS detection. However, it is still challenging to easily fabricate a low detection limit, high sensitivity and reproducible SHD-SERS substrate.

View Article and Find Full Text PDF

The ability to regulate the tilt angle of Si nanostructures is important for their applications in photoelectric devices. Herein we demonstrate a facile method to precisely regulate the tilt angle of nanocones with metal-assisted chemical etching (MaCE) in a one-step process based on the systematic investigation of the formation mechanism of the tilt angle. With Au nanohole arrays as templates, the tilt angles of Si nanocone arrays can be tuned from 69.

View Article and Find Full Text PDF