Publications by authors named "Dongyang Lin"

Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear.

View Article and Find Full Text PDF

The global prevalence of gout is on the rise. Yiyi Tongfeng Formula (YTF), a traditional herbal compound, has gained recognition for its efficacy in managing acute gouty arthritis (AGA). Despite its widespread use, the underlying mechanisms of YTF in AGA treatment remain largely undefined.

View Article and Find Full Text PDF

Aging is an intricate biological event that occurs in both vertebrates and invertebrates. During the aging process, the brain, a vulnerable organ, undergoes structural and functional alterations, resulting in behavioral changes. The hippocampus has long been known to be critically associated with cognitive impairment, dementia, and Alzheimer's disease during aging; however, the underlying mechanisms remain largely unknown.

View Article and Find Full Text PDF

Neuropathic pain caused by somatosensory nervous system dysfunction is a serious public health problem. Some long noncoding RNAs (lncRNAs) can participate in physiological processes involved in neuropathic pain. However, the effects of lncRNA DGCR5 in neuropathic pain have not been explored.

View Article and Find Full Text PDF

Objective This study aimed to investigate the mechanism by which Chinese herbal medicine ulcer oil (UO) accelerates ulcer healing in a diabetic ulcer rat model. Methods Sprague Dawley rats were allocated at random into four groups: a control group, a positive control group (PC), a UO treatment group and an ethacridine lactate solution treatment group. Subcutaneous tissue was surgically removed from the rats on days 3, 7 and 14.

View Article and Find Full Text PDF

Silicon-substituted hydroxyapaptite (Si-HA) coatings were prepared on titanium substrates by electrolytic deposition technique in electrolytes containing Ca(2+), PO(4)(3-) and SiO(3)(2-) ions with various SiO(3)(2-)/(PO(4)(3-) + SiO(3)(2-)) molar ratios (η(si)). The deposition was all conducted at a constant voltage of 3.0 V, with titanium substrate as cathode and platinum as anode, for 1 h at 85°C.

View Article and Find Full Text PDF

Hydroxyapatite coatings were deposited on the titanium substrate by using various content Na₃Cit as an organic modifier in electrolytes. The influence of the Na₃Cit on the sizes of the HA crystals during electrolytic deposition was investigated under different molar ratio of Na₃Cit to calcium ions. The experimental results showed that the size of HA crystal was well controlled by the addition of Na₃Cit.

View Article and Find Full Text PDF

A novel process has been developed for the preparation of a hydroxyapatite (HA) coating with a hierarchical structure on a Ti substrate. The Ti substrate was first subjected to electrolytic deposition at -1.6V (versus Ag/AgCl/KCl) in a solution of 0.

View Article and Find Full Text PDF

This is a report on the research of HA/Ti6Al4V composite implants that were successfully fabricated by radio frequency magnetron sputtering (RF-MS) technique. The mechanism and bioactivity of these implants immersed in simulated body fluid (SBF) were investigated. Changes in surface morphology, interfacial bond state, crystal structure and phase composition of HA coating before and after immersing in SBF were characterized by Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

View Article and Find Full Text PDF