A microphysiological system (MPS) is recently emerging as a promising alternative to the classical preclinical models, especially animal testing. A key factor for the construction of MPS is to provide a biomimetic three-dimensional (3D) cellular microenvironment. However, it still remains a challenge to introduce extracellular matrix (ECM)-like biomaterials such as hydrogels and nanofibers in a precise and spatiotemporal manner.
View Article and Find Full Text PDFSimulating the structure and function of blood capillaries is very important for an in-depth insight into their role in the human body and treatment of capillary-related diseases. Due to the similar composition and structure, hollow hydrogel microfibers are well-recognized as potential biomimetic blood capillaries. In this paper, we report a novel, facile, and reproducible method to fabricate coaxial microfluidic chips via 3D printing-assisted soft lithography and then hollow hydrogel microfibers using the as-prepared coaxial microfluidic chips.
View Article and Find Full Text PDFThe storage of living cells is the major challenge for cell research and cell treatment. Here, we introduced a novel supramolecular gel cryopreservation system which was prepared in the microchannel, and the supramolecular gel (BDTC) was self-assembled by gelator Boc- O-dodecyl-l-tyrosine (BDT). This cryopreservation system could obviously minimize the cell injury because the BDTC supramolecular gel had a more compact three-dimensional network structure when the BDT gelator self-assembled in the confined space of microchannel.
View Article and Find Full Text PDF