Publications by authors named "Dongxia Hou"

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Clarifying the molecular mechanism of lipid metabolism is crucial for the treatment of NAFLD. We examined miR-192-5p levels in the livers of mice in which NAFLD was induced via a high-fat diet (HFD), as well as in mouse primary hepatocytes and human HepG2 cells treated with free fatty acids (FFAs).

View Article and Find Full Text PDF

Many pieces of evidence show that the adaptive response of plants to salt stress requires the maturation of N-glycan on associated proteins. However, it is still little known about the salt-responsive glycoproteins that function in this process. In the present study, we identified salt-responsive glycoproteins in wild-type (WT) and two mutants defective in N-glycan maturation, and .

View Article and Find Full Text PDF

Objective: To carry out prenatal diagnosis for a fetus with Pallister-killian syndrome (PKS).

Methods: The fetus was found to have limb malformations at 23rd gestational week. With informed consent from its parents, amniotic fluid sample was taken from the fetus and subjected to chromosomal karyotyping, chromosomal microarray analysis (CMA) and fluorescence in situ hybridization (FISH) assay.

View Article and Find Full Text PDF

A number of fatty acids have been found in porcine oocytes and early embryos. Recent studies have indicated the importance of fatty acids in the development of pre-implantation porcine embryos, whether derived from in vivo or somatic cell nuclear transfer. However, the effects of fatty acids on porcine embryos produced by in vitro fertilization (IVF) remain poorly defined.

View Article and Find Full Text PDF

Chronic infection with hepatitis B virus (HBV) is a major public health problem. Recently, RNA interfering-based strategy has shown great potential to eradicate HBV infection. In current study, we report the experimental observation of plant-derived artificial microRNAs (amiRNAs) acting as therapeutics in HBsAg transgenic mice.

View Article and Find Full Text PDF

MicroRNAs have become the spotlight of the biological community for more than a decade, but we are only now beginning to understand their functions. The detection of stably expressed endogenous microRNAs in human blood suggests that these circulating miRNAs can mediate intercellular communication. Our previous study reported the surprising finding that exogenous rice MIR168a could regulate liver low-density lipoprotein receptor adapter protein 1 (LDLRAP1) gene expression in mice.

View Article and Find Full Text PDF

Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA (milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O.

View Article and Find Full Text PDF

Early and convenient diagnosis is urgently needed for acute Stanford type A aortic dissection (AAAD) patients due to its high mortality within the first 48 hours. Circulating microRNAs (miRNAs) are promising biomarkers of cardiovascular diseases, however, little is known about circulating miRNAs involved in AAAD. Here, the blood serum was sampled from 104 AAAD+ patients and 103 age-matched donors.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs of 21-23 nucleotides that play important roles in virtually all biological pathways in mammals and in other multicellular organisms. miR-23a and miR-23b (miR-23a/b) are critical oncomiRs (miRNAs that are associated with human cancers) of gastric cancer, but their detailed roles in the initiation and progression of gastric cancer remain to be elucidated. In this study, we found that miR-23a/b were consistently upregulated in gastric cancer tissues.

View Article and Find Full Text PDF

Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings.

View Article and Find Full Text PDF

Endometrial epithelial cells (EECs) cultured in vitro are valuable tools for investigating embryo implantation and trophoblast differentiation. In this study, we have established the bovine EECs and trophoblast stem-like (TS) coculture system, and used it to investigate the binucleate cell formation of ungulates. The EECs was derived from the uterine horn ipsilateral to the corpus luteum by using collagenase I and deoxyribonuclease I, which exhibited typical epithelial morphology and were expressing bovine uterine epithelial marker such as IFNAR1, IFNAR2, Erα, PGR, ESR1 and KRT18.

View Article and Find Full Text PDF

Visceral adiposity is strongly associated with metabolic disease risk, whereas subcutaneous adiposity is comparatively benign. However, their relative physiological importance in energy homeostasis remains unclear. Here, we show that after 24-h fasting, the subcutaneous adipose tissue of mice acquires key properties of visceral fat.

View Article and Find Full Text PDF

Cell-derived exosomes have been demonstrated to be efficient carriers of small RNAs to neighbouring or distant cells, highlighting the preponderance of exosomes as carriers for gene therapy over other artificial delivery tools. In the present study, we employed modified exosomes expressing the neuron-specific rabies viral glycoprotein (RVG) peptide on the membrane surface to deliver opioid receptor mu (MOR) siRNA into the brain to treat morphine addiction. We found that MOR siRNA could be efficiently packaged into RVG exosomes and was associated with argonaute 2 (AGO2) in exosomes.

View Article and Find Full Text PDF
Article Synopsis
  • Trophoblasts are key cells in the placenta, crucial for embryo implantation, and studying them in vitro helps understand implantation mechanisms.
  • This research derived porcine trophoblast cell lines from IVF and PA blastocysts and tested the effects of the ROCK inhibitor Y-27632 on their growth and differentiation.
  • The study found that cell lines could be cultured over many passages with stable morphology, showing characteristics of mature trophoblasts and enhanced growth and gene expression when treated with Y-27632, offering a new method for studying placenta development.
View Article and Find Full Text PDF

Background: Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis.

View Article and Find Full Text PDF

Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored.

View Article and Find Full Text PDF

ERBB4, one of four ErbB receptor tyrosine kinase family members, plays an important role in the etiology and progression of lung cancer. In this study, we found that the ERBB4 protein levels were consistently up-regulated in lung cancer tissues, whereas the mRNA levels varied randomly, suggesting that a post-transcriptional mechanism was involved in regulating ERBB4 expression. Because microRNAs are powerful post-transcriptional regulators of gene expression, we used bioinformatic analyses to search for microRNAs that can potentially target ERBB4.

View Article and Find Full Text PDF

Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung.

View Article and Find Full Text PDF

An increased population of CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR).

View Article and Find Full Text PDF

Aim/hypothesis: Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling. PTP1B deficiency improves obesity-induced insulin resistance and consequently improves type 2 diabetes in mice. Here, the small molecule norathyriol reversed obesity- and high-fat-diet-induced insulin resistance by inhibiting PTP1B.

View Article and Find Full Text PDF

Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis.

View Article and Find Full Text PDF